
NeuroImage xxx (2018) 1–13
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
The age-dependent relationship between resting heart rate variability and
functional brain connectivity

D. Kumral a,b,*, H.L. Schaare a,c, F. Beyer a,d, J. Reinelt a, M. Uhlig a,c, F. Liem a, L. Lampe a,
A. Babayan a, A. Reiter e,a, M. Erbey b, J. Roebbig a, M. Loeffler f, M.L. Schroeter a,f,g, D. Husser h,
A.V. Witte a, A. Villringer a,b,d,f, i, M. Gaebler a,b,f

a Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
b MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Berlin, Germany
c International Max Planck Research School NeuroCom, Leipzig, Germany
d Subproject A1, Collaborative Research Centre 1052 “Obesity Mechanisms”, University of Leipzig, Leipzig, Germany
e Lifespan Developmental Neuroscience, Technical University of Dresden, Dresden, Germany
f LIFE – Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
g Department of Cognitive Neurology, University of Leipzig, Leipzig, Germany
h Department of Electrophysiology, Leipzig Heart Centre, University of Leipzig, Leipzig, Germany
i Center for Stroke Research Berlin, Charit�e – Universitaetsmedizin Berlin, Berlin, Germany
A R T I C L E I N F O

Keywords:
Heart rate variability
Aging
Eigenvector centrality mapping
Brain structure
Voxel-based morphometry
Default mode network
* Corresponding author. Department of Neurolog
E-mail address: dkumral@cbs.mpg.de (D. Kumra

https://doi.org/10.1016/j.neuroimage.2018.10.027
Received 26 June 2018; Received in revised form 5
Available online xxxx
1053-8119/© 2018 Elsevier Inc. All rights reserved

Please cite this article in press as: Kumral, D
connectivity, NeuroImage (2018), https://doi
A B S T R A C T

Resting heart rate variability (HRV), an index of parasympathetic cardioregulation and an individual trait marker
related to mental and physical health, decreases with age. Previous studies have associated resting HRV with
structural and functional properties of the brain – mainly in cortical midline and limbic structures. We hypoth-
esized that aging affects the relationship between resting HRV and brain structure and function. In 388 healthy
subjects of three age groups (140 younger: 26.0� 4.2 years, 119 middle-aged: 46.3� 6.2 years, 129 older:
66.9� 4.7 years), gray matter volume (GMV, voxel-based morphometry) and resting state functional connectivity
(eigenvector centrality mapping and exploratory seed-based functional connectivity) were related to resting HRV,
measured as the root mean square of successive differences (RMSSD). Confirming previous findings, resting HRV
decreased with age. For HRV-related GMV, there were no statistically significant differences between the age
groups, nor similarities across all age groups. In whole-brain functional connectivity analyses, we found an age-
dependent association between resting HRV and eigenvector centrality in the bilateral ventromedial prefrontal
cortex (vmPFC), driven by the younger adults. Across all age groups, HRV was positively correlated with network
centrality in the bilateral posterior cingulate cortex. Seed-based functional connectivity analysis using the vmPFC
cluster revealed an HRV-related cortico-cerebellar network in younger but not in middle-aged or older adults. Our
results indicate that the decrease of HRV with age is accompanied by changes in functional connectivity along the
cortical midline. This extends our knowledge of brain-body interactions and their changes over the lifespan.
1. Introduction

Behavioral and physiological changes that occur with advancing age
become manifest in the structure and function of multiple macro- and
micro-systems of the human organism (Arking, 2006). Important alter-
ations occur in the cardiovascular and nervous systems, which are
coupled to react dynamically to environmental demands (McEwen,
2003). Such adaptations to internal and external challenges, while
leaving an imprint on body and brain, underlie healthy aging (Lipsitz and
y, Max Planck Institute for Huma
l).
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Goldberger, 1992; Swank, 1996). They are also reflected in brain-heart
interactions – particularly in parasympathetic cardioregulation – that
can be measured by resting heart rate variability (HRV).

HRV quantifies variations in the cardiac beat-to-beat (or RR) interval
that can be measured by electrocardiogram (ECG). Phasic modulation of
heart rate (HR) arises from both branches of the autonomic nervous
system, the parasympathetic (PNS) and sympathetic (SNS). The PNS
quickly reduces HR while the SNS slowly increases it. Some HRV mea-
sures represent parasympathetic (i.e., vagal) influences on the heart more
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than others (Thayer and Lane, 2007). HRV, typically acquired at rest, is
known to decrease with age (De Meersman and Stein, 2007; Umetani
et al., 1998). Preservation of autonomic function, as indexed by relatively
increased HRV, has been related to longevity and healthy aging (Zulfiqar
et al., 2010). Higher HRV has also been associated with better health
outcomes (Kemp and Quintana, 2013), for example, with lower risk for
cardiovascular diseases (Liao et al., 1997; Thayer et al., 2010) and
reduced overall mortality (Buccelletti et al., 2009). In older adults, HRV
can indicate inter-individual differences in cognitive performance (Kim
et al., 2006; Mahinrad et al., 2016; Zeki Al Hazzouri et al., 2014). Hence,
resting HRV could be regarded as a biomarker of healthy aging.

Based on resting state fMRI (i.e., continuous fMRI recordings in the
absence of overt task performance or experimental stimulation), spon-
taneous modulations of the blood oxygenation level dependent (BOLD)
signal are used to quantify temporal correlations between brain regions
to extract functional connectivity patterns. The number of functional
networks in the resting brain is consistent across individuals (Dam-
oiseaux et al., 2006), reliable across time (Shehzad et al., 2009; Zuo et al.,
2010), and has been related to inter-individual differences in behavior
and cognition (Adelstein et al., 2011; Mennes et al., 2011; Smith et al.,
2015). Common ways to examine connectivity patterns of specific brain
regions are seed-based functional connectivity analysis (SBCA) or inde-
pendent component analysis (ICA; Margulies et al., 2010; for a review).
Further, graph theory provides a powerful approach to investigate
complex brain connectivity patterns (Bullmore and Sporns, 2009; Rubi-
nov and Sporns, 2010). One commonly used measure is eigenvector
centrality mapping (ECM). ECM can identify important network nodes
(in this case: voxels) based on their functional connectivity (similar to
Google's page rank algorithm) without the need to select specific seed
regions a priori or specify the number of networks/components (Loh-
mann et al., 2010; Wink et al., 2012). Since ECM focuses on the inte-
gration of individual brain regions into the whole brain network, it is a
useful whole-brain measure to assess the resting state architecture as it
relates to an individual's physiology (García-García et al., 2015; Lohmann
et al., 2010), psychology (Koelsch et al., 2013), or health/disease (Bin-
newijzend et al., 2014; Mueller et al., 2016).

Using such connectivity methods, brain networks associated with
autonomic, affective, and cognitive regulation have been identified
(Babo-Rebelo et al., 2016; Gould van Praag et al., 2017; Sakaki et al.,
2016). One of those is the “central autonomic network” (CAN; Benarroch,
1993), which includes cortical midline structures such as the anterior
cingulate cortex (ACC), orbitofrontal cortex (OFC), ventromedial pre-
frontal cortex (vmPFC), and subcortical areas like the insula, amygdala,
and hypothalamus (Beissner et al., 2013; Thayer et al., 2009). With its
connections to the sinoatrial node of the heart, via the stellate ganglia
and vagus nerve (Beissner et al., 2013; Thayer et al., 2009), the CAN
supports visceromotor and neuroendocrine responses that are critical for
goal-directed behavior, adaptability, and health (Benarroch, 1993;
Hagemann et al., 2003). The “neurovisceral integration model”, a
framework to explain individual differences in resting vagal function
(Kemp et al., 2017; Thayer et al., 2012), extends the role of the CAN in
parasympathetic cardioregulation. According to this model, frontal and
midbrain areas interact. In particular, the prefrontal cortex (PFC) inhibits
subcortical regions and the ANS. Assuming this close interaction of the
brain and the ANS in HR regulation, it has been suggested that
inter-individual differences in HRV may reflect structural and functional
differences in the brain (Thayer et al., 2012). Indeed, resting HRV has
been associated with cortical thickness in the right anterior midcingulate
cortex (aMCC) in a young sample (Winkelmann et al., 2017). A similar
association between cortical thickness and the (rostral anterior) cingulate
cortex was found in Yoo et al. (2017), which also included older subjects.
The main result of the latter study was an age-invariant association be-
tween resting HRV and cortical thickness in ventral brain areas like the
lateral OFC (Yoo et al., 2017) (Carnevali et al., 2018 for a review).
Another recent study in individuals between 20 and 60 years found a
negative correlation between resting HRV and gray matter volume
2

(GMV) in limbic structures such as the insula, amygdala, and para-
hippocampal gyrus (Wei et al., 2018). Similar brain regions have also
been related to HRV in functional neuroimaging studies (Holzman and
Bridgett, 2017; Mather and Thayer, 2018; Thayer et al., 2012); both
task-based (e.g., BOLD: Critchley et al., 2000; regional cerebral blood
flow; rCBF: Gianaros et al., 2004; meta-analyses: Beissner et al., 2013;
Thayer et al., 2012) and under resting state conditions (Chang et al.,
2013; Jennings et al., 2016; Sakaki et al., 2016). In these studies, acti-
vation and connectivity in the medial prefrontal cortex (mPFC), ACC, and
posterior cingulate cortex (PCC) have most consistently been associated
with HRV and parasympathetic cardioregulation.

Here, we investigated brain-heart interactions across the adult life-
span by combining measures of brain structure and function with the
assessment of resting HRV. So far, the only fMRI study that investigated
heart-brain interactions on functional connectivity across the adult life-
span included 17 younger and 18 older subjects and restricted their an-
alyses to a priori defined regions-of-interest (Sakaki et al., 2016). Across
all subjects, higher HRV was related to stronger functional connectivity
between the right amygdala and medial prefrontal regions, while age
group differences were found in HRV-related connectivity between the
right amygdala and lateral prefrontal regions. The main aims of this study
were to examine (i) the relationship between resting HRV, brain struc-
ture, and functional connectivity as well as (ii) its dependence on age in a
large sample of healthy adults across the lifespan. Based on structural and
functional findings (reviewed above), we hypothesized that the neural
correlates of resting HRV are age-dependent. To detect HRV-related
structural alterations, we used voxel-based morphometry (VBM) (Ash-
burner and Friston, 2000). To assess HRV-related changes in the func-
tional architecture across the whole brain, we used ECM as a data-driven
approach, which allows the characterization of whole-brain network
architecture without requiring a priori assumptions (Lohmann et al.,
2010). To further explore age-dependent ECM-derived whole-brain
connectivity patterns, we also implemented an exploratory SBCA (for
more details see Methods).

2. Methods

2.1. Participants

Data from two studies were used: (I) the “Leipzig Research Centre for
Civilization Diseases” (LIFE; Loeffler et al., 2015) and (II) the “Leipzig
Study for Mind-Body-Emotion Interactions” (LEMON; Babayan et al. in
revision).

LIFE is a large population-based cohort study from Leipzig, Germany
(Loeffler et al., 2015). From the sample of LIFE subjects with MRI data
(n¼ 2667), we selected healthy subjects between the ages of 20 and 80
years. We applied strict exclusion criteria in three categories: i)
health-related criteria; participants were excluded if they reported any
medication intake except vitamin food supplements, any past or present
cardiovascular health problems, diagnoses, or surgeries, any other
medical history and/or diagnosis, in a medical interview. ii) ECG-related
criteria (see details on ECG acquisition below); if a subject had more than
one ECG recording, we used the first acquired ECG file that was collected
on the same day as the MRI acquisition. Otherwise, we selected the ECG
recording that was temporally closest to MRI acquisition. Regarding data
quality, we excluded data with unrepairable signal artifacts or problems
regarding R-peak detection. We also omitted data with any abnormal
ECG signal (e.g., supraventricular extrasystoles) after visual inspection as
well as subjects with extreme HRV values based on Tukey's (1977) cri-
terion of 3 interquartile ranges (IQR) above the LIFE sample median
(N¼ 14, Median: 30.13, IQR: 29.76). iii) MRI-related criteria; we
excluded subjects with incidental findings (e.g., brain tumor, multiple
sclerosis, or stroke) on T1-weighted and/or fluid-attenuated inversion
recovery (FLAIR) images. We further excluded subjects based on rs-fMRI
quality assessment, for example with faulty preprocessing (e.g., during
denoising) or excessive head motion (criterion: mean framewise
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displacement (FD)> 0.6mm; Power et al., 2015, 2012).
LEMON is a cross-sectional sample of healthy younger and older

subjects from Leipzig, Germany, who had never participated in another
“psychological or MRI research”-related study, did not report any
neurological disorders, head injury, any medication affecting the car-
diovascular and/or central nervous system, alcohol or other substance
abuse, hypertension, pregnancy, claustrophobia, chemotherapy and
malignant diseases, current and/or previous psychiatric disease
(Babayan et al. in revision). The LEMON sample comprised 171 eligible
subjects divided into two age groups (young: 20–35 years, old: 59–77
years). Similar to the exclusion criteria mentioned above, subjects with
incomplete data (N¼ 38), incidental findings in MRI (FLAIR,
T2-weighted, T1-weighted, SWI) (N¼ 7), or psychoactive drug intake
(e.g., tetrahydrocannabinol) determined by urine test (N¼ 9) were
excluded. Two subjects were discarded due to the HRV outlier criterion
mentioned above (LEMON sample Median: 40.62, IQR: 39.82) and five
subjects due to excessive head motion (mean FD> 0.6mm; Power et al.,
2015, 2012). To increase the statistical power and the comparability, we
pooled the two samples and divided them into three age groups: young
(20-35 years from LIFE and LEMON), middle-aged (35–60 years from
LIFE), and old (60-80 years from LIFE and LEMON). Details are provided
in Table 1. The participant characteristics separately for each sample and
comparing the samples can be found in Supplementary Tables 1-5.

All participants provided written informed consent approved by the
ethics committee of the medical faculty at the University of Leipzig,
Germany. Both studies were in agreement with the Declaration of
Helsinki.

2.2. ECG collection and HRV analysis

LIFE sample. Ten seconds of a standard medical 12-lead resting ECG
were acquired using a Page-Writer TC50 ECG system (Philips Medical
Systems, Amsterdam, Netherlands) in supine position. The subjects did
not receive an explicit instruction before the ECG acquisition. We used
lead I (from Einthoven's triangle) for the analysis. R-peaks were auto-
matically detected using the findpeaks function in Matlab 9 (The Math-
Works, Inc., Natick, Massachusetts) or Kubios 2.2 (Tarvainen et al.,
2014). The ECG data for each subject was manually checked for physi-
ological or computational artifacts like supraventricular extrasystoles or
faulty peak detection, respectively. From RR interval time series (i.e.,
tachograms), we calculated the root mean square of successive differ-
ences (RMSSD) of adjacent RR intervals (Task Force of the European
Society of Cardiology and the North American Society of Pacing Elec-
trophysiology, 1996; Munoz et al., 2015; Nussinovitch et al., 2011a,
2011b).

LEMON sample. Four minutes of resting ECG were acquired using a
Biopac MP35 amplifier with the acquisition software AcqKnowledge
Table 1
Participant characteristics for each age group. For continuous variables, data is provide
to detect age group differences.

Young (20-35 years) Middle (35-60 years

(N¼ 140) (N¼ 119)

Age (years) 26.01 (4.17) 46.39 (6.25)
Sex 38 F/102M 36 F/83M
Resting HRV (RMSSD in ms) 53.35 (27.11) 32.77 (21.01)
Mean HR (1/min) 64.38 (9.62) 62.93 (10.01)
RR interval (ms) 952.56 (137.06) 977.87 (149.75)
mean FD (mm) 0.18 (0.05) 0.28 (0.10)
BMI (kg/m2) 23.58 (3.03) 26.51 (3.62)
WHR 0.86 (0.07) 0.92 (0.08)
SBP (mmHg) 122.08 (11.42) 126.55 (13.74)
DBP (mmHg) 71.23 (7.33) 78.21 (9.11)
TMT A (s) 24.95 (7.79) 30.33 (12.73)
TMT B (s) 57.72 (17.89) 71.40 (39.04)

*p < 0.05; **p < 0.01; ***p < 0.001, 2-tailed.
a Kruskal-Wallis-Test.

3

version 4.0 (Biopac Systems Inc., http://www.biopac.com, Goleta, CA,
USA) and three disposable electrodes on the thorax: the reference elec-
trode was attached near the right collarbone, the measuring electrode on
the left-hand side of the body on the same level as the 10th rib, and the
ground electrode on the right hip bone. The subjects were instructed to
think about daily routines, relax, and breathe at a comfortable rate in
sitting position. The peak detection and RMSSD calculation were per-
formed using Kubios 2.2 (Tarvainen et al., 2014).

RMSSD values of our sample were natural log-transformed to obtain
normally distributed data (Shapiro-Wilk tests; W¼ 0.99, p¼ 0.12). In the
following, log-transformed RMSSD will be referred to as “HRV”.

2.3. MRI acquisition

Brain imaging for both datasets was performed on the same 3 T
Siemens Magnetom Verio MR scanner (Siemens Medical Systems,
Erlangen, Germany) with a standard 32-channel head coil. In both
samples, subjects were instructed to keep their eyes open and not to fall
asleep during the acquisition period.

LIFE sample. The structural T1-weighted images were acquired using a
generalized auto-calibrating partially parallel acquisition technique
(Griswold et al., 2002) and the Alzheimer's Disease Neuroimaging
Initiative standard protocol with the following parameters: inversion
time (TI)¼ 900ms, repetition time (TR)¼ 2.3ms, echo time
(TE)¼ 2.98ms, flip angle (FA)¼ 9�, band width¼ 240Hz/pixel, field of
view (FOV)¼ 256� 240� 176mm3, voxel size¼ 1� 1� 1mm3, no
interpolation. T2*-weighted functional images were acquired using an
echo-planar-imaging (EPI) sequence with the following parameters:
TR ¼ 2000 ms, TE ¼ 30 ms, FA ¼ 90�, FOV ¼ 192 � 192 � 144 mm3,
voxel size¼ 3mm� 3mm, slice thickness¼ 4mm, slice gap¼ 0.8mm,
300 vol, duration¼ 10.04min. A gradient echo field map with the sam-
ple geometry was used for distortion correction (TR¼ 488ms, TE
1¼ 5.19ms, TE 2¼ 7.65ms).

LEMON sample. The structural image was recorded using an
MP2RAGE sequence (Marques et al., 2010) with the following parame-
ters: TI 1¼ 700ms, TI 2¼ 2500ms, TR¼ 5000ms, TE¼ 2.92ms, FA
1¼ 4�, FA 2¼ 5�, band width¼ 240 Hz/pixel,
FOV¼ 256� 240� 176mm3, voxel size¼ 1� 1� 1mm3. The func-
tional images were acquired using a T2*-weighted multiband EPI
sequence with the following parameters: TR ¼ 1400 ms, TE ¼ 30 ms,
FA ¼ 69�, FOV ¼ 202 mm, voxel size ¼ 2.3 � 2.3 � 2.3 mm3, slice
thickness¼ 2.3mm, slice gap¼ 0.67mm, 657 vol, multiband accelera-
tion factor¼ 4, duration¼ 15.30min. A gradient echo field map with the
sample geometry was used for distortion correction (TR¼ 680ms, TE
1¼ 5.19ms, TE 2¼ 7.65ms).
d in means and standard deviations (in parenthesis). One-way ANOVAs were used

) Old (60-80 years) df F-value Eta-squared (η2)

(N¼ 129)

66.88 (4.68)
50 F/79M 4.38a

27.27 (22.99) 385 43.01*** 0.18
66.24 (10.44) 385 3.41* 0.02
928.32 (148.53) 385 3.62* 0.02
0.31 (0.11) 385 82.61*** 0.30
26.54 (3.57) 382 33.34*** 0.15
0.95 (0.08) 381 47.64*** 0.20
138.76 (18.2) 381 45.45*** 0.20
80.00 (10.44) 381 35.47*** 0.16
40.01 (13.54) 384 58.48*** 0.23
95.15 (45.09) 382 45.73*** 0.20

http://www.biopac.com
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2.4. MR data preprocessing and analysis

Structural MRI. We analyzed structural brain alterations on the T1-
weighted 3D image using VBM (Ashburner and Friston, 2000) as
implemented in SPM12 (Wellcome Trust Centre for Neuroimaging, UCL,
London, UK) and the Computational Anatomy Toolbox (CAT12: http://
dbm.neuro.uni-jena.de/cat/), running on Matlab 9.3 (Mathworks,
Natick, MA, USA). In the LEMON sample before the preprocessing, we
removed the background noise fromMP2RAGE on the computed uniform
images via masking (Streitbürger et al., 2014). The preprocessing steps
consisted of segmentation, bias-correction, and normalization using
high-dimension Diffeomorphic Anatomical Registration Through Expo-
nentiated Lie Algebra (DARTEL; Ashburner, 2007) with the template
from 550 healthy controls of all ages in the IXI Dataset (http://www.
brain-development.org) in MNI space. We then applied a 12-parameter
affine registration and nonlinear transformation to correct for image
size and position. The voxel size was resampled to 1.5� 1.5� 1.5mm
and smoothed using an 8-mm Gaussian kernel. For each subject,
whole-brain GMV was calculated. An absolute threshold mask of 0.05
was specified in the analyses to cover the whole brain. For quality
assessment, we visually inspected the segmentation quality and image
homogeneity with the CAT12 toolbox. One participant from the
middle-aged group was excluded because of MRI inhomogeneities.

Functional MRI. Preprocessing was implemented in Nipype (Gorgo-
lewski et al., 2011), incorporating tools from FreeSurfer (Fischl, 2012),
FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), ANTs (Avants et al.,
2011), CBS Tools (Bazin et al., 2014), and Nitime (Rokem et al., 2009).
The pipeline comprised the following steps: (I) discarding the first five
EPI volumes to allow for signal equilibration and steady state, (II) 3D
motion correction (FSL mcflirt), (III) distortion correction (FSL fugue),
(IV) rigid body co-registration of functional scans to the individual
T1-weighted image (Freesurfer bbregister), (V) denoising including
removal of 24 motion parameters (CPAC, Friston et al., 1996), motion,
signal intensity spikes (Nipype rapidart), physiological noise in white
matter and cerebrospinal fluid (CSF) (CompCor; Behzadi et al., 2007),
together with linear and quadratic signal trends, (VI) band-pass filtering
between 0.01 and 0.1 Hz (Nilearn), (VII) spatial normalization to
MNI152 standard space (3mm isotropic) via transformation parameters
derived during structural preprocessing (ANTS). (VIII) The data were
then spatially smoothed with a 6-mm FWHM Gaussian kernel.

The reproducible workflows containing all implementation details
for our datasets can be found here: LIFE; https://github.com/fliem/
LIFE_RS_preprocessing, LEMON; https://github.com/NeuroanatomyAnd
Connectivity/pipelines/releases/tag/v2.0.

Eigenvector Centrality Mapping (ECM). In ECM, each voxel in the brain
receives a centrality value that is larger if the voxel is strongly correlated
with many other voxels that are themselves central (Lohmann et al.,
2010). Higher EC values thus indicate stronger connectedness of the
respective area (Lohmann et al., 2010; Wink et al., 2012). ECM is
computationally efficient, enables connectivity analysis at the voxel
level, and does not require initial thresholding of connections (Lohmann
et al., 2010). Here, the fast ECM implementation was used (Wink et al.,
2012). We restricted our ECM analysis to GM, which we extracted with a
mask from the tissue priors in SPM12 by selecting voxels with a GM tissue
probability of 20% or higher. The resulting mask contained ~63,000
voxels covering the entire brain.

Exploratory Seed-based Functional Connectivity Analysis (SBCA). To
further explore the connectivity patterns of significant age-dependent
centrality changes across the whole brain, ECM was complemented by
SBCA. Regions detected in ECM can be used as seeds in a subsequent
SBCA to investigate intrinsic functional connectivity patterns (Taubert
et al., 2011). A bilateral vmPFC seed was created by binarizing the sig-
nificant ECM findings (MNI coordinates: [x ¼ 0, y ¼ 57, z ¼ �6], cluster
size k¼ 62). Time series were extracted and averaged across all voxels of
the seed. For each subject, a correlation between the time series of the
seed and every other voxel in the brain was calculated using 3dfimþ
4

(AFNI). The resulting correlation maps were Fisher r-to-z transformed
using 3dcalc (AFNI).

Statistical analyses for f/MRI. Statistical analyses were carried out
using the general linear model (GLM) approach implemented in SPM12.
For all analyses, we used resting HRV as the variable of interest and age,
sex, study, and either total intracranial volume (TIV, for VBM analysis) or
in-scanner head motion (mean FD; Power et al., 2015, 2012 for ECM and
SBCA) as covariates of no interest. We performed a one-way ANOVAwith
three age groups (young, middle, and old) as between-subject factor and
calculated the interaction effect between HRV and age group. Based on
the significant results of the ANOVA, we computed pairwise group dif-
ferences using independent t-tests. Using one-sample t-tests, we further
tested the main effect of HRV across all subjects and for each age group
separately.

As additional controls, (1) both samples were analyzed separately (for
more details see Supplementary Table 7), (2) HRV analyses were
repeated using resting HR – instead of HRV – as variable of interest and
age, sex, study, and either TIV (for VBM) or mean FD (for ECM and SBCA)
as covariates of no interest, as well as (3) the effect of age on EC maps –
controlling for sex, study, and mean FD (Long et al., 2017; Zuo et al.,
2012).

For each statistical analysis, a positive and a negative contrast were
computed. Only results surviving whole-brain family-wise error (FWE)
correction at p< 0.05 (cluster-level) with a voxel-level threshold of
p< 0.001 were considered significant. All (unthresholded) statistical
maps are available at NeuroVault (Gorgolewski et al., 2015) for detailed
inspection in 3D (http://neurovault.org/collections/TELEUIIY).

2.5. Potential confounding factors for HRV

Sex. As HRV has been reported to differ between sexes (Koenig and
Thayer, 2016; Voss et al., 2015; Thayer et al., 2015), we analyzed sex
differences in HRV per age group in a 2 (sex)� 3 (age group) ANOVA.

Smoking. Since smoking has a short- and long-term impact on HRV
(Felber Dietrich et al., 2007; Hayano et al., 1990), we examined potential
effects of smoking status on HRV. To this end, we classified subjects into
three groups (smokers: N¼ 75, former smokers: N¼ 84, and
non-smokers: N¼ 220, [no info available: NA¼ 9]). We used a 2 (sex) x 3
(smoking) ANOVA to test the mean differences between the groups using
sex as additional between-subjects factor.

Blood Pressure. Systolic blood pressure (SBP) and diastolic blood
pressure (DBP) were measured in a seated position using an automatic
oscillometric blood pressure (BP) monitor (LIFE sample; OMRON 705IT,
LEMON sample; OMRON M500) after a resting period of 5min. While in
the LIFE sample three consecutive BP measurements were taken from the
right arm in intervals of 3min, in the LEMON sample measurements were
taken from participants' left arms on three separate occasions within two
weeks. In each sample, all available measurements per participant were
averaged to one SBP and one DBP value.

Anthropometric measurements. Subjects' heights and weights were
taken according to a standardized protocol by trained study staff. Body
mass index (BMI; in kg/m2) was calculated by dividing the body weight
by the square of the body height, while waist to hip ratio (WHR) was
calculated as waist circumference measurement divided by hip circum-
ference measurement (Huxley et al., 2010). As a control, all analyses on
the association between HRV and the brain across the age groups were
repeated with BP and BMI as additional covariates of no interest.

Cognition. Previous studies have related resting HRV to cognitive
performance (Hansen et al., 2004; Mahinrad et al., 2016; Zeki Al Haz-
zouri et al., 2014). The latter is often assessed using the Trail Making Test
(TMT), which measures executive function, processing speed, or mental
flexibility (Reitan, 1955; Reitan and Wolfson, 1995). By drawing lines,
subjects sequentially connect numbers and/or letters while their reaction
times are recorded. In the first part of the test (TMT-A) the targets are all
numbers (1, 2, 3, etc.), while in the second part (TMT-B), participants
need to alternate between numbers and letters (1, A, 2, B, etc.). In both

http://dbm.neuro.uni-jena.de/cat/
http://dbm.neuro.uni-jena.de/cat/
http://www.brain-development.org
http://www.brain-development.org
https://github.com/fliem/LIFE_RS_preprocessing
https://github.com/fliem/LIFE_RS_preprocessing
https://github.com/NeuroanatomyAndConnectivity/pipelines/releases/tag/v2.0
https://github.com/NeuroanatomyAndConnectivity/pipelines/releases/tag/v2.0
http://neurovault.org/collections/TELEUIIY
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TMT A and B, the time to complete the task quantifies the performance
and lower scores indicate better performance.

For cognition, BP, and anthropometric measurements, we assessed
age-group differences statistically using one-way ANOVAs and then
tested their association with HRV using Spearman correlations for each
age group. To determine statistical significance, we used a two-sided
α-level of 0.05. Statistical analyses were conducted using R version
3.3.2 (R Core Team, 2016).

3. Results

Details about the demographic, anthropometric, cardiovascular, and
cognitive characteristics of the 388 participants can be found in Table 1.
The age groups differed significantly on all variables (Table 1). Compared
to population-based norms (Hobert et al., 2011; Then et al., 2014;
Tombaugh, 2004), our sample shows higher TMT scores, indicating
cognitive health.

Note. HRV¼ heart rate variability; RMSSD¼ root mean square of
successive differences; HR¼ heart rate, FD¼ framewise displacement;
BMI¼ body mass index; WHR¼waist to hip ratio; SBP¼ systolic blood
pressure; DBP¼ diastolic blood pressure; TMT¼ trail making test.

There was a significant main effect of age group (F(2,382)¼ 63.552,
p¼ 2� 10�16, η2¼ 0.182), no significant main effect of sex
(F(1,382)¼ 0.187, p¼ 0.666), and no significant age group� sex
Fig. 1. Association between resting heart rate variability (HRV), measured as root me
The interaction between age group and HRV was significant in the bilateral ventrom
pFWE¼ 0.006), displayed at x¼�3. B) An increased EC in the bilateral posteri
pFWE< 0.001) across all age groups, displayed at x¼ 6. Threshold: p< 0.001 at the
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interaction on HRV (F(2,382)¼ 0.233, p¼ 0.792). HRV did not differ as
a function of smoking status (main effect smoking group:
F(2,373)¼ 1.241, p¼ 0.290, main effect of sex: F(1,373)¼ 0.473,
p¼ 0.492; smoking group� sex interaction: F(2,373)¼ 0.606,
p¼ 0.546).

HRV was negatively correlated with age (rho¼�0.210, p¼ 0.010),
BMI (rho¼�0.207, p¼ 0.020), and DBP (rho¼�0.231, p¼ 0.012) in
the middle-aged individuals. No significant associations were found be-
tween HRV and mean FD, SBP, WHR, TMT A, or TMT B in any of the age
groups (Supplementary Table 6).

Voxel-based Morphometry (VBM). There was no significant association
between HRV and GMV across all subjects. Also, an ANOVA did not yield
a significant age group�HRV interaction on GMV. While an exploratory
one-sample t-test in the middle-aged group indicated a significant HRV-
related increase of GMV in the left cerebellum (MNI coordinates: [-15,
�87,�51], k¼ 1540, T¼ 3.92, pFWE¼ 0.004), there were no significant
effects of HRV on GMV for younger and older adults. Control analyses
that included BP and BMI as covariates of no interest did not change the
results (https://neurovault.org/collections/TELEUIIY/). Additional ana-
lyses using resting HR as covariates of interest did not show any signif-
icant VBM results neither across all age groups, nor in each age group
(https://neurovault.org/collections/TELEUIIY/).

Eigenvector Centrality Mapping (ECM). A significant effect of age group
on the relation between resting HRV and EC was detected in the bilateral
an square of successive differences (RMSSD), and eigenvector centrality (EC). A)
edial prefrontal cortex (vmPFC; MNI coordinates: [0, 57, �6], k¼ 62, F¼ 10.79,
or cingulate cortex (PCC; MNI coordinates [6, �54, 36], k¼ 204, T¼ 5.29,
voxel and p< 0.05 with family-wise error (FWE) correction at the cluster level.

https://neurovault.org/collections/TELEUIIY/
https://neurovault.org/collections/TELEUIIY/
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vmPFC (MNI coordinates: [0, 57, �6], k¼ 62, F¼ 10.79). The resulting
beta values for each age group are plotted in Fig. 1A, suggesting that
younger adults show a stronger positive association between HRV and EC
in the bilateral vmPFC than middle-aged and older individuals (Table 2).
This was supported by post-hoc two-sample t-tests, which indicated that
the correlation between HRV and EC in the bilateral vmPFC was signif-
icantly stronger for young> old and young>middle-age subjects
(Table 2). A one-sample t-test across all subjects showed increased EC
with higher HRV in the bilateral PCC (Fig. 1B). The negative contrast did
not yield any significant results. In separate one-sample t-tests for each
age group, we found HRV-dependent EC increases in the right vmPFC,
bilateral PCC, and superior frontal gyrus (SFG), as well as HRV-
dependent EC decreases in the left superior occipital gyrus (SOG)
including the cuneus and calcarine sulcus in the group of young subjects.
Our data did not show any significant positive or negative correlation
with HRV in the groups of middle-aged and old subjects that were
correctable for multiple comparisons. The complete ECM results are
presented in Table 2.

Control analyses that included BP and BMI as covariates of no interest
did not change the results (https://neurovault.org/collections/
TELEUIIY/). Resting HR – instead of HRV –was not significantly associ-
ated with functional brain centrality, neither across all age groups, nor in
each age group separately (https://neurovault.org/collections/
TELEUIIY/). The association between age and EC is shown in Supple-
mentary Figure 1.

Exploratory Seed-based Functional Connectivity Analysis (SBCA). In the
additional exploratory SBCA, a significant effect of age group on the
relation between resting HRV and whole-brain bilateral vmPFC connec-
tivity was found in the bilateral cerebellum, right superior parietal lobe
Table 2
Brain regions that show significant increases or decreases in eigenvector centrality
p< 0.05 with family-wise error (FWE) correction at the cluster level.

Regions H cluster si

ANOVA Ventromedial prefrontal cortex R/L 62

Across age groups (þ) Posterior cingulate cortex/precuneus R/L 204

Young (þ) Ventromedial prefrontal cortex R 316

Posterior cingulate cortex/precuneus R/L 167

Superior frontal gyrus R/L 240

Young (�) Superior occipital gyrus L 129

Middle (þ) n.s
Middle (�) n.s
Old (þ) n.s
Old (�) n.s

Young>Old Ventromedial prefrontal cortex R/L 131

Young<Old n.s
Middle> Young n.s
Middle< Young Ventromedial prefrontal cortex R/L 85

Old>Middle n.s
Old<Middle n.s

Note. R¼ right, L¼ left, H¼ hemisphere, ANOVA¼ analysis of variance, MNI¼Mon
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(SPL), left middle occipital gyrus (MOG), inferior occipital gyrus (IOG),
and left SFG extended to the supplementary motor area (SMA). The beta
values from the right cerebellum for each age group are plotted in
Fig. 2A, suggesting that younger adults show stronger functional con-
nectivity between the bilateral vmPFC and right cerebellum than middle-
aged and older individuals (Table 3). The post-hoc two-sample t-tests
similarly indicated that higher HRV levels were significantly correlated
with stronger functional connectivity between the bilateral vmPFC and
cerebellum, right SPL, left MOG, left post-central gyrus, and left SMA for
the contrasts of young> old and young>middle (Table 3). A one-sample
t-test in the overall sample, to assess the association between HRV and
bilateral vmPFC connectivity, showed an increased functional connec-
tivity with the left middle frontal gyrus (MFG) extending to the dorso-
lateral prefrontal cortex (DLPFC) (Fig. 2B). Separate one-sample t-tests
for each age group showed no significant association for the middle-aged
and older subjects but an increased vmPFC connectivity in distributed
brain regions including the bilateral cerebellum, bilateral MOG, and the
right SMA for the young subjects. We did not observe any significant
negative correlations, neither in the overall sample nor in each age
group. Control analyses that included BP and BMI as covariates of no
interest did not change the results (https://neurovault.org/collections/
TELEUIIY/). The complete SBCA results are presented in Table 3.

4. Discussion

In the present study, we assessed the relationship between para-
sympathetic cardioregulation (indexed by HRV) and brain structure
(using VBM) as well as whole-brain resting state functional connectivity
(using ECM and SBCA) in a large sample of healthy young, middle-aged,
with resting heart rate variability (HRV). Threshold: p< 0.001 at the voxel and

ze k (Voxel) MNI coordinates FWE z F/T-value

x y z

0 57 �6 0.006 4.03 10.79
�3 48 �6 3.76 9.63
0 60 3 3.49 8.53

6 �54 36 <0.001 5.29 5.39
�9 �57 33 4.04 4.09
�12 �51 45 3.35 3.38

0 57 �6 <0.001 5.07 5.16
6 51 9 4.89 4.98
15 60 15 4.22 4.16
6 �57 27 <0.001 4.46 4.52
�9 �54 18 3.72 3.75
�9 �60 27 3.70 3.74
15 33 48 0.002 4.50 4.56
15 48 39 4.32 4.37
�6 36 48 4.24 4.29
�6 �96 3 <0.001 4.63 4.70
�15 �99 �3 4.24 4.29
0 �84 �3 3.71 3.76

0 57 �6 <0.001 4.45 4.51
0 60 3 4.01 4.05
�3 45 �8 3.62 3.65

3 45 �6 0.005 4.09 4.13
�12 48 �9 4.06 4.11
6 45 15 3.58 3.61

treal Neurological Institute, n.s¼ not significant.

https://neurovault.org/collections/TELEUIIY/
https://neurovault.org/collections/TELEUIIY/
https://neurovault.org/collections/TELEUIIY/
https://neurovault.org/collections/TELEUIIY/
https://neurovault.org/collections/TELEUIIY/
https://neurovault.org/collections/TELEUIIY/


Fig. 2. Association between resting heart rate variability (HRV), measured as root mean square of successive differences (RMSSD), and brain function in an
exploratory seed-based functional connectivity analysis originating from the bilateral ventromedial prefrontal cortex (vmPFC). A) The interaction between age group
and HRV was significant in the right cerebellum (MNI coordinates [33, �42, �45], k¼ 46, F¼ 15.19, pFWE< 0.001), displayed at x¼ 33. B) An increased functional
connectivity in the right dorsolateral prefrontal cortex (DLPFC; MNI coordinates [-30, 54, 12], k¼ 67, T¼ 4.10, pFWE¼ 0.032) was found across all age groups,
displayed at z¼ 12. Threshold: p< 0.001 at the voxel and p< 0.05 with family-wise error (FWE) correction at the cluster level.
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and older participants. We used an optimally healthy sample for a given
age range in terms of both physical (e.g., Janssen et al., 2002) and
cognitive health (e.g., Hobert et al., 2011; Tombaugh, 2004). We found
the frequently observed age-related decrease in resting HRV (Almeida--
Santos et al., 2016; Voss et al., 2015) to be accompanied by
age-dependent and age-invariant alterations in brain function. Specif-
ically, higher HRV was linked to stronger network centrality in several
brain regions, particularly along the cortical midline. In the PCC, this
correlation was present in all age groups while in the vmPFC, network
centrality was related to higher HRV in young but not in middle-aged and
old adults. These findings support the view that altered HRV during aging
may have a functional brain component associated with it.

4.1. Age-dependent association of resting HRV with functional connectivity

Given the relationship between HRV and age (Almeida-Santos et al.,
2016; Voss et al., 2015), HRV and brain structure (Wei et al., 2018), as
well as HRV and brain function (Sakaki et al., 2016), we hypothesized the
neural correlates of resting HRV to be also age-dependent. Our results
confirm that the relationship between HRV and network centrality at rest
differs between age groups. Evidence is accumulating that alterations of
intrinsic brain activity are a key feature of normal brain aging (Dam-
oiseaux et al., 2008). Age-dependent intrinsic connectivity alterations in
7

the DMN have been found not only in healthy aging (Ferreira and
Busatto, 2013) but also in age-related pathologies, for example, in in-
dividuals with a high familial risk for depression (Posner et al., 2016) and
in young APOE-ε4 carriers (Filippini et al., 2009), which is a possible
biomarker for Alzheimer's dementia (Kanekiyo et al., 2014). Our finding
that resting HRV is related to increased network centrality in medial
frontal regions in the young but not in the middle-aged or old age group
could be interpreted in the framework of the functional plasticity hy-
pothesis of cognitive aging (Greenwood, 2007). According to this hy-
pothesis, the structural vulnerability – particularly of prefrontal cortex –

leads to an age-related functional reorganization (e.g., Grady, 2012; for a
review). The changes in the resting state network architecture around the
vmPFC that are related to parasympathetic cardioregulation could thus
represent altered cardiovascular control with advancing age and
concomitant network reorganization.

In addition to the age-dependent association of resting HRV with
functional brain network centrality in medial frontal regions, we also
found an HRV-related bilateral medial parietal cluster in the PCC that
was independent of age. Both vmPFC and PCC are central nodes of the
CAN (Benarroch, 1993) and the DMN (Greicius et al., 2003; Uddin et al.,
2009) and have been related to self-generated or internally directed
mental processes like thoughts and feelings (Andrews-Hanna et al., 2014;
Raichle et al., 2001). The medial frontal (e.g., vmPFC) and medial



Table 3
Brain regions that show resting heart rate variability-related connectivity with the bilateral ventromedial prefrontal cortex (vmPFC) in an exploratory seed-based
functional connectivity analysis. Thresholds: p< 0.001 at the voxel and p< 0.05 with family-wise error (FWE) correction at the cluster level.

Regions H cluster size k (Voxels) MNI coordinates FWE z F/T- value

x y z

ANOVA Cerebellum R 46 33 �42 �45 0.049 4.91 15.19
Superior parietal lobe R 203 24 �75 51 <0.001 4.48 12.94

33 �78 45 4.34 12.25
36 �75 30 3.82 9.88

Middle occipital gyrus L 57 �33 �84 30 0.021 4.24 11.74
�39 �66 24 3.31 7.84

Inferior occipital gyrus 60 �33 �69 �6 0.016 3.85 9.97
�42 �63 �3 3.76 9.61
�51 �69 �15 3.62 9.03

Cerebellum L 61 �30 �60 �30 0.015 3.83 9.91
�33 �66 �21 3.59 8.91
�39 �72 �18 3.58 8.87

Superior frontal gyrus extended to supplementary motor area R/
L

71 0 15 66 0.007 3.73 9.47

0 3 57 3.6 8.96
9 12 57 3.53 8.66

Across age groups (þ) Middle frontal gyrus extended to dorsolateral prefrontal cortex L 67 �30 54 12 0.032 4.06 4.10
�36 54 3 3.54 3.57
�18 51 3 3.39 3.42

Young (þ) Cerebellum R 131 33 �42 �45 0.001 5.06 5.15
42 �60 �48 4.68 4.75
36 �63 �39 3.29 3.31

Cerebellum L 116 �12 �57 �54 0.002 4.6 4.67
�21 �69 �54 4.2 4.25
�15 �48 �51 4.09 4.14

Middle occipital gyrus R 163 39 �75 42 <0.001 4.46 4.52
30 �69 51 4.15 4.20
21 �78 51 3.63 3.67

Middle occipital gyrus L 131 �39 �66 24 0.001 4.31 4.37
�33 �84 30 3.94 3.98
�39 �60 12 3.47 3.50

Cerebellum R 63 18 �75 �18 0.04 4.13 4.18
27 �81 �18 3.68 3.72
18 �84 �15 3.64 3.67

Cerebellum L 102 �33 �81 �21 0.005 4.13 4.18
�30 �60 �30 3.7 3.74
�21 �90 �15 3.59 3.62

Supplementary motor area R 87 3 6 54 0.01 3.77 3.81
0 15 69 3.68 3.72
9 12 57 3.59 3.63

Young (�) n.s
Middle (þ) n.s
Middle (�) n.s
Old (þ) n.s
Old (�) n.s
Young>Old Cerebellum R 67 33 �42 �45 0.032 4.59 4.66

15 �48 �51 3.63 3.67
27 �57 �45 3.41 3.44

Inferior occipital gyrus L 237 �33 �69 �6 <0.001 4.41 4.47
�42 �63 �3 4.33 4.38
�39 �72 �18 4.14 4.19

Superior parietal lobe R 275 24 �78 51 <0.001 4.31 4.37
36 �75 45 4.21 4.26
36 �75 27 3.95 4.00

Middle occipital gyrus L 140 �27 �84 27 0.001 4.30 4.35
�36 �66 24 3.89 3.93
�39 �60 12 3.62 3.65

Superior frontal gyrus extended to supplementary motor area R/
L

147 �3 3 57 0.001 3.99 4.04

12 6 63 3.72 3.75
3 12 66 3.61 3.65

Postcentral gyrus R 72 42 �6 30 0.024 3.87 3.91
54 6 24 3.69 3.73
54 0 33 3.53 3.56

Superior frontal gyrus extended to supplementary motor area R/
L

73 3 �18 60 0.022 3.62 3.66

�3 �36 69 3.56 3.59
3 �9 69 3.29 3.31

Young<Old n.s
Middle> Young n.s
Middle< Young Cerebellum R 189 33 �42 �45 <0.001 4.99 5.08

42 �60 �48 4.60 4.67

(continued on next page)
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Table 3 (continued )

Regions H cluster size k (Voxels) MNI coordinates FWE z F/T- value

x y z

18 �45 �51 4.34 4.40
Superior parietal lobe R 270 27 �72 51 <0.001 4.76 4.83

33 �78 45 4.51 4.58
36 �75 30 4.04 4.09

Cerebellum L 239 �12 �57 �54 <0.001 4.74 4.82
�15 �45 �51 4.61 4.68
�12 �39 �45 4.36 4.42

Middle occipital gyrus L 76 �33 �84 30 0.019 4.59 4.66
�45 �72 27 3.37 3.40

Cerebellum R/
L

313 �30 �60 �30 <0.001 4.27 4.32

12 �69 �21 4.18 4.23
18 �78 �18 3.95 3.99

Superior frontal gyrus extended to supplementary motor Area L 109 0 15 66 0.003 4.19 4.24
15 9 69 3.61 3.64

Old>Middle n.s
Old<Middle n.s

Note. R¼ right, L¼ left, H¼ hemisphere, ANOVA¼ analysis of variance, MNI¼Montreal Neurological Institute.
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parietal components (e.g., PCC and precuneus) of CAN and DMN have
been particularly implied in parasympathetic functioning (Beissner et al.,
2013; Benarroch, 1993). In addition, prefrontal visceral structures (Price,
2007, 1999) respond to heartbeats (Babo-Rebelo et al., 2016; Park et al.,
2014) and modulate HR or HRV (Makovac et al., 2017; Van Eden and
Buijs, 2000). It is plausible that in the absence of external stimulation,
brain function (i.e., activity and connectivity) in CAN and DMN is pre-
dominantly allocated to the “internal milieu”, that is, to monitoring and
regulating bodily signals (e.g., the parasympathetic “rest-and-digest”).
Fittingly, the PCC has been found active in tasks that involved the
assessment of self-relevance (Yu et al., 2011) as well as self-location and
body ownership (Guterstam et al., 2015), while the vmPFC was related to
processing bodily information (Gusnard et al., 2001), autonomic control
(Critchley et al., 2011), and cardiovascular arousal (Wong et al., 2007).

Using the cluster that showed a significant interaction in the cen-
trality analyses, the exploratory SBCA similarly showed an age-
dependent relationship between resting HRV and functional brain con-
nectivity. Specifically, we found stronger functional connectivity be-
tween the bilateral vmPFC and a widespread set of brain regions
including the bilateral cerebellum, bilateral occipital gyrus, right SPL,
and bilateral SFG extending to the SMA in young but not in middle-aged
or older adults. These results extend the ECM findings by suggesting
additional cortico-cerebellar regions might be involved in the modula-
tion of visceral processes. In line with this interpretation, activation in
the cerebellum has been connected to the regulation of visceral responses
(Demirtas-Tatlidede et al., 2011), fear conditioning (Leaton, 2003; Sac-
chetti et al., 2002), feeding (Tataranni et al., 1999), as well as the co-
ordination and control of cardiovascular activities (Bradley et al., 1991;
Ghelarducci and Sebastiani, 1996). Furthermore, autonomic activity
during cognitive and motor tasks was positively associated with activa-
tion in the cerebellum and, among other regions, the SMA and dorsal
ACC (Critchley et al., 2003).

Despite previous evidence of the relationship between GMV and
vagally-mediated HRV in CAN regions (Wei et al., 2018), using
whole-brain VBM analysis, we only found a significant GMV change
related with resting HRV in the cerebellum for the middle-aged group.
Notably, in the study by Wei et al. (2018), reduced GM volume in the
cerebellum was associated with HR (but not HRV) in healthy
middle-aged individuals. However, using resting HR, we were also not
able to replicate the previous findings (Wei et al., 2018). The divergent
results could be due to different measurement parameters (e.g., MRI
sequence parameters) but also to different effect size or statistical power
(for more details see Limitations).

Finally, while our study investigated the neural correlates of resting
9

HRV, previous studies investigated the neural correlates of HR at rest and
HR changes with stimulation or tasks (e.g., Beissner et al., 2013 for a
review). Our additional analyses using resting HR as covariate of interest
did not show significant associations with brain structure or function.
This suggests that resting HRV and resting HR (as they are differentially
influenced by the branches of the ANS) have different neural components
at rest.
4.2. Physiological and psychophysiological interpretations of HRV

The most fundamental (purely physiological) understanding of the
role of the ANS – and particularly the PNS – is to ensure visceral and
cardiovascular functioning or bodily homeostasis by allowing rapid
adaptive behavioral and physiological reactions in ever-changing envi-
ronments, or by disengagement and relaxation in resting moments (“rest-
and-digest”; e.g., Cannon, 1929). More psychophysiological in-
terpretations of ANS function have extended this view to cognitive, af-
fective, and social phenomena. For example, the neurovisceral
integration model takes higher HRV to facilitate physiological, cognitive,
socio-emotional, and behavioral flexibility or adaptation (Smith et al.,
2017; Thayer and Lane, 2000; Thayer and Ruiz-Padial, 2006). It explic-
itly links the brain and the rest of the body by assuming that the PFC –

and particularly the vmPFC – tonically inhibits the amygdala, which af-
fects autonomic function, thereby linking both nervous systems to
inhibitory or self-regulatory processes (Holzman and Bridgett, 2017;
Kemp et al., 2017; Thayer et al., 2012). Convergently, resting HRV has
recently been associated with vmPFC activation during a dietary
self-control task in young adults (Maier and Hare, 2017).

5. Limitations

There are a number of limitations that should be considered in the
interpretation of our results. The study design is cross-sectional and does
not allow us to infer the directionality of the association between resting
HRV and the brain. Additionally, our health criteria also allowed inclu-
sion of subjects with higher BMI (>25 kg/m2) or untreated/undiagnosed
hypertension (SBP> 140mmHg, DBP> 90mmHg). This makes it diffi-
cult to disentangle HRV-related influences from other bodily/cardio-
vascular influences, which are also physiologically related (BMI: Molfino
et al., 2009; BP: Singh et al., 1998). However, control analyses that
accounted for BP and BMI showed very similar results of the association
between resting HRV and the brain. Although psychological in-
terpretations of a single physiological marker like resting HRV are
intrinsically limited, previous studies have associated HRV with different
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trait or state levels of, for example, executive control (Capuana et al.,
2014), stress (Sin et al., 2016), and emotion regulation (Williams et al.,
2015). For a psychological interpretation of our finding that the associ-
ation between HRV and functional connectivity at rest is age-dependent,
similar analyses on task-related parasympathetic and neural activity
could be helpful. The samples differed significantly, for example in
resting HRV (young subjects), sex distribution, sample size, BP, and
MRI/ECG acquisition parameters (Supplementary Table 1, Tables 4 and
5). Although we accounted for within- and between-sample variance in
the second-level GLM, these differences may still have influenced our
results (e.g., for structural MRI; Streitbürger et al., 2014). Further, we
calculated the RMSSD using 10 s of ECG data, which has been shown to
be a valid measurement (Munoz et al., 2015; Nussinovitch et al., 2011a,
2011b). Nevertheless, ECG data recorded over longer periods (e.g., 24-h)
can complement this “ultra-short” evaluation of parasympathetic func-
tion. Finally, although ECM is a relatively new measure that has certain
advantages (see above and Lohmann et al., 2010; Wink et al., 2012),
studies using other measures of functional connectivity could comple-
ment our findings on the association of parasympathetic cardioregulation
and functional brain connectivity.

6. Conclusion

In this cross-sectional study, we examined the association of resting
HRV with brain structure and functional connectivity in different age
groups of healthy adults. Our main findings are correlations between
resting HRV and brain network architecture in the PCC across all age
groups and in the vmPFC in young but not in middle-aged or older
subjects. These support the view that the well-known HRV decrease with
age may have a functional brain network component along the cortical
midline. Consistent with the role of these areas in affective, cognitive,
and autonomic regulation, our results provide a comprehensive picture of
the differential effect of aging on heart-brain interactions. These findings
emphasize the importance of parasympathetic cardioregulation in
healthy aging.
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