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Abstract Immersive virtual reality (VR) enables naturalistic neuroscientific studies while main-
taining experimental control, but dynamic and interactive stimuli pose methodological challenges. 
We here probed the link between emotional arousal, a fundamental property of affective expe-
rience, and parieto- occipital alpha power under naturalistic stimulation: 37 young healthy adults 
completed an immersive VR experience, which included rollercoaster rides, while their EEG was 
recorded. They then continuously rated their subjective emotional arousal while viewing a replay 
of their experience. The association between emotional arousal and parieto- occipital alpha power 
was tested and confirmed by (1) decomposing the continuous EEG signal while maximizing the 
comodulation between alpha power and arousal ratings and by (2) decoding periods of high and 
low arousal with discriminative common spatial patterns and a long short- term memory recurrent 
neural network. We successfully combine EEG and a naturalistic immersive VR experience to extend 
previous findings on the neurophysiology of emotional arousal towards real- world neuroscience.

Editor's evaluation
Hofmann et al., investigate the link between two phenomena, emotional arousal and cortical α 
activity. Although α activity is tightly linked to the first reports of electric activity in the brain nearly 
100 years ago, a comprehensive characterization of this phenomenon is elusive. One of the reasons 
is that EEG, the major method to investigate electric activity in the human brain, is susceptible to 
motion artifacts and, thus, mostly used in laboratory settings. Here, the authors combine EEG with 
virtual reality (VR) to give experimental participants a roller coaster ride with high immersion. The 
ride, literally, leads to large ups and downs in emotional arousal, which is quantified by the subjects 
during a later rerun. Several different decoding methods were evaluated, and each showed above- 
chance levels of performance, substantiating a link between lower levels of parietal/occipital α and 
subjective arousal in a quasi- naturalistic setting.

Introduction
While humans almost constantly interact with complex, dynamic environments, lab- based studies typi-
cally use simplified stimuli in passive experimental situations. Trading realism for experimental control 
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happens at the expense of the representativity of the experimental design (Brunswik, 1955), that is, 
the degree to which effects found in the lab generalize to practical everyday- life conditions. This may 
be particularly true for affective phenomena like emotions.

Emotional arousal as a fundamental property of affective experience
Emotions are subjective, physiological, and behavioural responses to personally meaningful external 
stimuli (Mauss and Robinson, 2009) or self- generated mental states (e.g., memories; Damasio et al., 
2000) and underlie our experience of the world (James, 1884; James, 1890; Seth, 2013). Emotions 
are crucial for physical and mental health (Gross and Muñoz, 1995) and their investigation has long 
been at the core of experimental psychology (Wundt and Judd, 1897).

Dimensional accounts conceptualize emotions along the two axes of valence and arousal (Duffy, 
1957; Kuppens et al., 2013; Russell, 1980; Russell and Barrett, 1999; Wundt and Judd, 1897): 
valence differentiates states of pleasure and displeasure, while emotional arousal describes the degree 
of activation or intensity that accompanies an emotional state. [Different types of arousal have been 
proposed and investigated, such as sexual, autonomic, emotional (Russell, 1980); also in the context 
of altered states of consciousness, for example, through anaesthesia or sleep. They may share psycho-
logical (e.g., increase in sensorimotor and emotional reactivity; Pfaff et al., 2012) and physiological 
aspects (e.g., sympathetic activation) but are not synonymous. We here explicitly refer to arousal in 
the context of the subjective experience of emotions].

Emotions have been linked to activity in the autonomic (ANS) and the central nervous system 
(Dalgleish, 2004). It has thereby been difficult to consistently associate individual, discrete emotion 
categories with specific response patterns in the ANS (Kragel and Labar, 2013; Kreibig, 2010; 
Siegel et al., 2018) or in distinct brain regions (Lindquist et al., 2012; but Saarimäki et al., 2016). 
Rather, emotions seem to be dynamically implemented by sets of brain regions and bodily activations 
that are involved in basic, also non- emotional psychological operations (i.e., ‘psychological primi-
tives’; Lindquist et al., 2012). In this view, humans are typically in fluctuating states of pleasant or 
unpleasant arousal (‘core affect’; Russell and Barrett, 1999; Lindquist, 2013), which can be influ-
enced by external stimuli. Emotional arousal could thereby be a ‘common currency’ to compare 
different stimuli or events (Lindquist, 2013) and represent fundamental neural processes that underlie 
a variety of emotions (Wilson- Mendenhall et al., 2013). It can fluctuate quickly – on the order of 
minutes (Kuppens et  al., 2010) or seconds (Mikutta et  al., 2012) – and has been connected to 

eLife digest Human emotions are complex and difficult to study. It is particularly difficult to study 
emotional arousal, this is, how engaging, motivating, or intense an emotional experience is. To learn 
how the human brain processes emotions, researchers usually show emotional images to participants 
in the laboratory while recording their brain activity. But viewing sequences of photos is not quite like 
experiencing the dynamic and interactive emotions people face in everyday life.

New technologies, such as immersive virtual reality, allow individuals to experience dynamic and 
interactive situations, giving scientists the opportunity to study human emotions in more realistic 
settings. These tools could lead to new insights regarding emotions and emotional arousal.

Hofmann, Klotzsche, Mariola et al. show that virtual reality can be a useful tool for studying emotions 
and emotional arousal. In the experiment, 37 healthy young adults put on virtual reality glasses and 
‘experienced’ two virtual rollercoaster rides. During the virtual rides, Hofmann, Klotzsche, Mariola et 
al. measured the participants' brain activity using a technique called electroencephalography (EEG). 
Then, the participants rewatched their rides and rated how emotionally arousing each moment was. 
Three different computer modeling techniques were then used to predict the participant’s emotional 
arousal based on their brain activity.

The experiments confirmed the results of traditional laboratory experiments and showed that the 
brain’s alpha waves can be used to predict emotional arousal. This suggests that immersive virtual 
reality is a useful tool for studying human emotions in circumstances that are more like everyday life. 
This may make future discoveries about human emotions more useful for real- life applications such as 
mental health care.

https://doi.org/10.7554/eLife.64812
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ANS activity, as measured by pupil diameter (Bradley et al., 2008) or skin conductance (Bach et al., 
2010). At the brain level, emotional arousal was linked to lower alpha power, particularly over parietal 
electrodes (Luft and Bhattacharya, 2015; Koelstra et al., 2012). The parieto- occipital alpha rhythm, 
typically oscillating in the frequency range of 8–13 Hz, is the dominant EEG rhythm in awake adults 
with eyes closed (Berger, 1929), where it varies with vigilance (Olbrich et al., 2009). However, in tasks 
of visual processing (i.e., with eyes open), parieto- occipital alpha power was linked to active atten-
tional processes (e.g., distractor suppression; Kelly et al., 2006; Klimesch, 2012) or, more generally, 
to functional inhibition for information gating (Jensen and Mazaheri, 2010). Physiologically, alpha 
oscillations were associated with large- scale synchronization of neuronal activity (Buzsáki, 2006) and 
metabolic deactivation (Moosmann et al., 2003).

In sum, bodily responses interact in complex ways across situations, and activity in the brain is 
central for emotions and their subjective component (Barrett, 2017; Seth, 2013). As arousal is a 
fundamental property not only of emotions but of subjective experience in general (Adolphs et al., 
2019), an investigation of its neurophysiology, reflected in neural oscillations, is essential to under-
standing the biology of the mind.

Studying emotional arousal and its neurophysiology in the lab
Studies that investigated emotions or emotional arousal in laboratory environments typically used 
static images. For example, more emotionally arousing relative to less emotionally arousing (e.g., 
neutral) pictures were associated with an event- related desynchronization, that is, a decrease in the 
power of alpha oscillations in posterior channels (De Cesarei and Codispoti, 2011; Schubring and 
Schupp, 2019; but Uusberg et al., 2013). In a study, in which emotional arousal was induced through 
pictures and music, blocks of higher emotional arousal were associated with decreased alpha power 
compared to blocks of lower emotional arousal (Luft and Bhattacharya, 2015). However, emotion- 
eliciting content that is repeatedly presented in trials creates an artificial experience for participants 
(Bridwell et al., 2018); it hardly resembles natural human behaviour and its (neuro- )physiology, which 
unfolds over multiple continuous timescales (Huk et al., 2018). Moreover, such presentations lack a 
sense of emotional continuity. External events often do not appear suddenly but are embedded in an 
enduring sequence, in which emotions build up and dissipate. Real- life scenarios also include antici-
patory aspects where emotional components can be amplified or even suppressed, thus rendering the 
relationship between the corresponding neuronal events and subjective experience more complex 
than the one typically studied with randomized or partitioned presentations of visual or auditory 
stimuli.

Virtual reality (VR) technology – particularly immersive VR, in which the user is completely surrounded 
by the virtual environment – affords the creation and presentation of computer- generated scenarios 
that are contextually rich and engaging (Diemer et al., 2015). As more naturalistic (i.e., dynamic, 
interactive, and less decontextualized) experiments allow to study the brain under conditions it was 
optimized for (Gibson, 1978; Hasson et al., 2020), their findings may more readily generalize to real- 
world circumstances and provide better models of the brain (Matusz et al., 2019; Shamay- Tsoory 
and Mendelsohn, 2019).

In this study, we aimed to link subjective emotional arousal with alpha power in a naturalistic 
setting. Participants completed an immersive VR experience that included virtual rollercoaster rides 
while their EEG was recorded. They then continuously rated their emotional arousal while viewing a 
replay of their previous experience (McCall et al., 2015).

Methodological challenges of naturalistic experiments
To tackle the challenges of data acquired in naturalistic settings and with continuous stimuli, we made 
use of recent advances in signal processing and statistical modelling: spatial filtering methods (orig-
inally developed for brain- computer interfaces [BCIs]; Blankertz et al., 2008) have recently gained 
popularity in cognitive neuroscience (Cohen, 2018; Zuure and Cohen, 2020), where they have been 
used to analyze continuous data collected in naturalistic experiments, for example, to find inter- 
subject correlations in neuroimaging data of participants watching the same movie (Dmochowski 
et al., 2012; Gaebler et al., 2014).

For the present experiment, two spatial filtering methods were applied to link alpha power and 
subjective emotional arousal: source power comodulation (SPoC; Dähne et al., 2014) and common 
spatial patterns (CSP; Blankertz et al., 2008; Ramoser et al., 2000).

https://doi.org/10.7554/eLife.64812
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SPoC is a supervised regression approach, in which a target variable (here: subjective emotional 
arousal) guides the extraction of relevant M/EEG oscillatory components (here: alpha power). SPoC 
has been used to predict single- trial reaction times from alpha power in a hand motor task (Meinel 
et al., 2016), muscular contraction from beta power (Sabbagh et al., 2020), and difficulty levels of 
a video game from theta and alpha power (Naumann et al., 2016). CSP is used to decompose a 
multivariate signal into components that maximize the difference in variance between distinct classes 
(here: periods of high and low emotional arousal). CSP thereby allows optimizing the extraction of 
power- based features from oscillatory signals, which can then be applied for training classifiers to 
solve binary or categorical prediction problems. CSP is being used with EEG for BCI (Blankertz et al., 
2008) or to decode workload (Schultze- Kraft et al., 2016).

In addition to M/EEG- specific spatial filtering methods, non- linear machine learning methods are 
suited for the analysis of continuous, multidimensional recordings from naturalistic experiments. Deep 
neural networks transform high- dimensional data into target output variables (here: different states 
of emotional arousal) by finding statistical invariances and hidden representations in the input (Good-
fellow et al., 2016; LeCun et al., 2015; Schmidhuber, 2015). For time- sequential data, long short- 
term memory (LSTM) recurrent neural networks (RNNs) are particularly suited (Greff et al., 2017; 
Hochreiter and Schmidhuber, 1995; Hochreiter and Schmidhuber, 1997). Via nonlinear gating units, 
the LSTM determines which information flows in and out of the memory cell in order to find long- and 
short- term dependencies over time. LSTMs have been successfully applied for speech recognition 
(Graves et al., 2013), language translation (Luong et al., 2015), or scene analysis in videos (Donahue 
et al., 2015), but also to detect emotions in speech and facial expressions (Wöllmer et al., 2010; 
Wöllmer et al., 2008) or workload in EEG (Bashivan et al., 2016; Hefron et al., 2017). In comparison 
to other deep learning methods, LSTMs are ‘quick learners’ due to their efficient gradient flow and 
thus suitable for the continuous and sparse data recorded under naturalistic stimulation with VR.

The present study tested the hypothesis of a negative association between parieto- occipital alpha 
power and subjective emotional arousal under dynamic and interactive stimulation. Combining immer-
sive VR and EEG, this study aimed to (1) induce variance in emotional arousal in a naturalistic setting 
and (2) capture the temporally evolving and subjective nature of emotional arousal via continuous 
ratings in order to (3) assess their link to oscillations of brain activity in the alpha frequency range. The 
link between subjective emotional arousal and alpha power was then tested by decoding the former 
from the latter using the three complementary analysis techniques SPoC, CSP, and LSTM.

Materials and methods
Participants
Forty- five healthy young participants were recruited via the participant database at the Berlin School of 
Mind and Brain (an adaption of ORSEE; Greiner, 2015). Previous studies on the relationship between 
emotional arousal and neural oscillations reported samples of 19–32 subjects (e.g., Koelstra et al., 
2012; Luft and Bhattacharya, 2015). We recruited more participants to compensate for anticipated 
dropouts due to the VR setup and to ensure a robust estimate of the model performances. Inclusion 
criteria were right- handedness, normal or corrected- to- normal vision, proficiency in German, no (self- 
reported) psychiatric, or neurological diagnoses in the past 10 years, and less than 3  hr of experience 
with VR. Participants were requested to not drink coffee or other stimulants 1 hr before coming to the 
lab. The experiment took ~2.5  hr, and participants were reimbursed with 9€ per hour. They signed 
informed consent before their participation, and the study was approved by the Ethics Committee of 
the Department of Psychology at the Humboldt- Universität zu Berlin.

Setup, stimuli, and measures
The experiment was conducted in a quiet room, in which the temperature was kept constant at 24 °C.

Neurophysiology/EEG
Thirty channels of EEG activity were recorded in accordance with the international 10/20 system (Shar-
brough et al., 1991) using a mobile amplifier (LiveAmp32) and active electrodes (actiCap; both by 
BrainProducts, Gilching, Germany, RRID:SCR_009443). Two additional electrooculogram (EOG) elec-
trodes were placed below and next to the right eye to track eye movements. Data were sampled at 

https://doi.org/10.7554/eLife.64812
https://identifiers.org/RRID/RRID:SCR_009443
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500 Hz with a hardware- based low- pass filter at 131 Hz and referenced to electrode FCz. The amplifier 
was placed on a high table in the back of the participant to minimize the pull on electrode cables and 
provide maximal freedom for head movements. The VR headset was placed carefully on top of the 
EEG cap, and impedances were brought below 10 kΩ. With the same amplifier, electrocardiography 
and galvanic skin responses were additionally acquired. These peripheral physiological data and the 
inter- individual differences in interoceptive accuracy are beyond the scope of this paper, and their 
results will be reported elsewhere.

VR HMD
An HTC Vive head- mounted display (HMD; HTC, New Taipei, Taiwan) and headphones (AIAIAI Tracks, 
ApS, Copenhagen, Denmark) were placed on top of the EEG cap using small, custom- made cushions 
to avoid pressure artefacts and increase comfort. The HTC Vive provides stereoscopy with two 1080 
× 1200- pixel OLED displays, a 110° field- of- view, and a frame rate of 90 Hz. The user’s head position 
is tracked using infrared light, accelerometry, and gyroscopy. Head movements were recorded by 
adapting scripts from Thor, 2016.

Immersive VR experience/stimulation
Stimulation comprised two commercially available rollercoaster rides (‘Russian VR Coasters’ by Funny 
Twins Games, Ekaterinburg, Russia, on Steam) that were separated by a 30  s break (during which 
participants kept their eyes open and looked straight): the ‘Space’ rollercoaster, a 153 s ride through 
planets, asteroids, and spaceships and the ‘Andes’ rollercoaster, a 97 s ride through a mountain scenery 
(for more details, see Figure 5 and the Appendix 1). The two rollercoaster rides were commercially 
available on Steam. The rollercoasters were selected for their length (to not cause physical discomfort 
by wearing the HMD for too long) and content (to induce variance in emotional arousal). The experi-
ence, comprising the sequence ‘Space’-break-‘Andes’, was kept constant across participants.

Self-reports
Questionnaires
At the beginning of the experiment, participants completed two arousal- related questionnaires: (1) 
the ‘Trait’ subscale of the ‘State- Trait Anxiety Inventory’ (STAI- T; Spielberger, 1983; Spielberger, 
1989) and (2) the ‘Sensation Seeking’ subscale of the ‘UPPS Impulsive Behaviour Scale’ (UPPS; 
Schmidt et al., 2008; Whiteside and Lynam, 2001). Before and after the experiment, participants 
completed a customized version of the ‘Simulator Sickness Questionnaire’ (SSQ, Bouchard et al., 
2017) comprising three items from the nausea (general discomfort, nausea, dizziness) and three items 

Figure 1. Schematic of experimental setup. (A) The participants underwent the experience (two rollercoasters separated by a break) in immersive virtual 
reality (VR), while EEG was recorded. (B) They then continuously rated the level of emotional arousal with a dial viewing a replay of their experience. The 
procedure was completed twice, without and with head movements.

https://doi.org/10.7554/eLife.64812
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from the oculomotor subscale (headache, blurred vision, difficulty concentrating) to capture potential 
VR side effects (Sharples et al., 2008). After the experiment, participants also rated the presence and 
valence of their experience (the results will be reported elsewhere).

Emotional arousal
After each VR experience, participants watched a 2D recording (recorded using OBS Studio, https:// 
obsproject. com/) of their experience on a virtual screen (SteamVR’s ‘view desktop’ feature), that is, 
without removing the HMD. They recalled and continuously rated their emotional arousal by turning 
a dial (PowerMate USB, Griffin Technology, Corona, CA; sampling frequency: 50 Hz), with which they 
manipulated a vertical rating bar, displayed next to the video, ranging from low (0) to high (100) in 
50 discrete steps (McCall et al., 2015; see Figure 1B). The exact formulation was ‘When we show 
you the video, please state continuously how emotionally arousing or exciting the particular moment 
during the VR experience was’ (German: ‘Wenn wir dir das Video zeigen, gebe bitte durchgehend an, 
wie emotional erregend, bzw. aufregend der jeweilige Moment während der VR Erfahrung war’). To 
present the playback video and the rating bar, a custom script written in Processing (v3.0) was used.

Procedure
Participants came to the lab and filled in the pre- test questionnaires. After the torso and limb elec-
trodes had been attached, participants completed a heartbeat guessing task (Schandry, 1981) to 
assess inter- individual differences in interoceptive accuracy (the results of peripheral physiology and 
interoception will be reported elsewhere). Then, the EEG cap was attached, and the HMD was care-
fully placed on top of it. To prevent or minimize (e.g., movement- related) artefacts, customized cush-
ions were placed below the straps of the VR headset to reduce the contact with the EEG sensors. In 
addition, the VR experience took place while seated and without full body movements (participants 
were asked to keep their feet and arms still during the recordings). A white grid was presented in the 
HMD to ensure that the participants’ vision was clear. They then completed a 10 min resting- state 
phase (5 min eyes open, 5 min eyes closed), before experiencing the first VR episode, which consisted 
of the two virtual rollercoaster rides and the intermediate break: first the ‘Space’ and then, after the 
break, the ‘Andes’ rollercoaster. In the subsequent rating phase, they recalled and continuously rated 
their emotional arousal while viewing a 2D recording of their experience. Importantly, each participant 
completed the VR episode (plus rating) twice: once while not moving the head (nomov condition) and 
once while freely moving the head (mov condition) during the VR experience. The sequence of the 
movement conditions was counterbalanced across participants (n = 19 with nomov condition first). At 
the end of the experiment, participants completed two additional questionnaires (the SUS and the 
questionnaire on subjective feelings of presence and valence during the virtual rollercoaster rides) 
before they were debriefed.

Data analysis
To exclude effects related to the on- or offset of the rollercoasters, data recorded during the first and 
the last 2.5 s of each rollercoaster were removed and the inter- individually slightly variable break was 
cropped to 30 s. The immersive VR experience that was analysed thus consisted of two time series of 
270 s length each per participant (nomov and mov).

Self-reports
Questionnaires
Inter- individual differences as assessed by the trait questionnaires were not the focus of this study, 
and their results (together with the peripheral physiological and interoception data) will be reported 
elsewhere. The sum of the simulator sickness ratings before and after the experiment was compared 
using a two- sided paired t- test.

Emotional arousal
Emotional arousal ratings were resampled to 1 Hz by averaging non- overlapping sliding windows, 
yielding one arousal value per second. For the classification analyses, ratings were divided by a tertile 
split into three distinct classes of arousal ratings (low, medium, high) per participant. For the binary 
classification (high vs. low arousal), the medium arousal ratings were discarded.

https://doi.org/10.7554/eLife.64812
https://obsproject.com/
https://obsproject.com/
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Neurophysiology
Preprocessing
EEG data were preprocessed and analyzed with custom MATLAB (RRID:SCR_001622) scripts built 
on the EEGLAB toolbox (RRID:SCR_007292, v13.5.4b; Delorme and Makeig, 2004). The prepro-
cessing steps were applied separately for data recorded during the nomov and mov conditions (i.e., 
without and with head movement). Continuous data were downsampled to 250 Hz (via the ‘pop_resa-
mple.m’ method in EEGLAB) and PREP pipeline (v0.55.2; Bigdely- Shamlo et al., 2015) procedures 
were applied for detrending (1  Hz high- pass filter, Hamming windowed zero- phase sinc FIR filter, 
cutoff frequency (–6 dB): 0.5 Hz, filter order: 827, transition band width: 1 Hz), line- noise removal (line 
frequency: 50 Hz), robust referencing to average, and detection as well as spherical interpolation 
of noisy channels. Due to the relatively short lengths of the time series, the default fraction of bad 
correlation windows (parameter ‘badTimeThreshold’, used to mark bad channels) was increased to 
0.05. For all other parameters, default values of PREP were kept. On average, 2.08 and 2.47 channels 
per subject were interpolated in the nomov and mov condition, respectively. Data remained high- pass 
filtered for the further steps of the analysis. Retrospective arousal ratings were added to the data sets, 
labelling each second of data with an associated arousal rating used as target for the later classifica-
tion and regression approaches.

ICA decomposition was used to identify and remove EEG artefacts caused by eye movements, 
blinks, and muscular activity. To facilitate the decomposition, ICA projection matrices were calculated 
on a subset of the data from which the noisiest parts had been removed. To this end, a copy of the 
continuous data was split into 270 epochs of 1 s length. Epochs containing absolute voltage values > 
100 µV in at least one channel (excluding channels that reflected eye movements, i.e., EOG channels, 
Fp1, Fp2, F7, F8) were deleted. Extended infomax (Lee et al., 1999) ICA decomposition was calcu-
lated on the remaining parts of the data (after correcting for rank deficiency with a principal compo-
nent analysis). Subjects with >90 to- be- deleted epochs (33 % of the data) were discarded from further 
analyses (nomov: n = 5; mov: n = 10). Artefactual ICA components were semi- automatically selected 
using the SASICA extension (Chaumon et al., 2015) of EEGLAB and visual inspection. On average, 
13.41 (nomov) and 10.31 (mov) components per subject were discarded. The remaining ICA weights 
were back- projected onto the continuous time series.

Dimensionality reduction: SSD in the (individual) alpha frequency range
Our main hypothesis was that EEG- derived power in the alpha frequency range allows the discrimina-
tion between different states of arousal. To calculate alpha power, we adopted spatio- spectral decom-
position (SSD; Nikulin et al., 2011) which extracts oscillatory sources from a set of mixed signals. 
Based on generalized eigenvalue decomposition, it finds the linear filters that maximize the signal in 
a specific frequency band and minimize noise in neighbouring frequency bands. Preprocessing with 
SSD has been previously shown to increase classification accuracy in BCI applications (Haufe et al., 
2014a). The alpha frequency range is typically fixed between 8 and 13 Hz. The individual alpha peak 
frequency, however, varies intra- and inter- individually, for example, with age or cognitive demand 
(Haegens et al., 2014; Mierau et al., 2017). To detect each participant’s individual peak of alpha 
oscillations for the SSD, (1) the power spectral density (PSD) of each channel was calculated using 
Welch’s method ( segment length = 5s ∗ sampling frequency  [i.e., 250 Hz] with 50 % overlap) in MATLAB 
(pwelch function). (2) To disentangle the power contribution of the 1 /f aperiodic signal from the peri-
odic component of interest (i.e., alpha), the MATLAB wrapper of the FOOOF toolbox (v0.1.1; Haller 
et al., 2018; frequency range: 0–40 Hz, peak width range: 1–12 Hz, no minimum peak amplitude, 
threshold of two SDs above the noise of the flattened spectrum) was used. The maximum power value 
in the 8–13 Hz range was considered the individual alpha peak frequency αi, on which the SSD bands 
of interest were defined (bandpass signal αi ± 2 Hz, bandstop noise αi ± 3 Hz, bandpass noise αi ± 4 
Hz).

The entire procedure was separately applied to the nomov and the mov condition to account for 
potential peak variability (Haegens et al., 2014; Mierau et al., 2017). SSD was then computed based 
on these peaks. A summary of the resulting individual alpha peak frequencies can be found in Figure 
2—source data 1. Figure 2 shows the averaged power spectrum across all participants and elec-
trodes. A clearly defined peak in the alpha frequency range is discernible for both conditions (nomov, 
mov) as well as for states of high and low emotional arousal.

https://doi.org/10.7554/eLife.64812
https://identifiers.org/RRID/RRID:SCR_001622
https://identifiers.org/RRID/RRID:SCR_007292
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SSD components selection
The SSD components with sufficient alpha information (i.e., power in the alpha frequency range that 
exceeds the noise level) were selected with the following steps (see Figure 3):

1. The PSD of a component was calculated using Welch’s method 
( segment length = 5s ∗ sampling frequency  [i.e., 250 Hz] with 50 % overlap) implemented in SciPy 
(RRID:SCR_008058, v1.4.1; Jones et al., 2001).

2. The 1 /f curve was fitted in the signal range between 0 and 40 Hz, excluding a ± 4 Hz window 
around the individual alpha peak frequency αi of the subject i. The 1 /f curve was defined (in log 

scale) as 
 
f−1 = log

(
1

a·xb

)
 
 , where x is the given component in the frequency domain,  a  serves as 

stretch parameter, and  b  represents the slope of the 1 /f curve.
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Figure 2. Group averaged power spectra for the two emotional arousal levels (low, high) and head movement conditions (nomov, mov). Thick lines 
represent the mean log- transformed power spectral density of all participants and electrodes. Shaded areas indicate the standard deviation of the 
participants. High and low emotional arousal are moments that have been rated as most (top tertile) and least arousing (bottom tertile), respectively 
(the middle tertile was discarded; see main text). The power spectra were produced using MATLAB’s pwelch function with the same data (after ICA 
correction and before spatio- spectral decomposition [SSD] filtering) and parameters as the individual alpha peak detection (see Materials and methods 
section for details). A tabular overview of the alpha peak frequencies of the individual participants is available as Figure 2—source data 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Source data 1. Selected alpha peaks (8–13 Hz) per participant and condition.

https://doi.org/10.7554/eLife.64812
https://identifiers.org/RRID/RRID:SCR_008058
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3. After fitting these parameters, the signal was detrended with respect to the estimated 1  /f 
curve.

4. Those components were selected, whose alpha peak power in the detrended alpha window (as 

defined in (1)) was (A) greater than zero plus a decision threshold, which was set to 0.35  
µV2

Hz   , 
and (B) higher than the mean amplitude of the adjacent frequency flanks of 2 Hz width on both 
sides of the window, that is,  power

(
alphapeak

)
−

(
meanpower

(
flank

))
≥ 1.45SD  (after z- scoring 

the detrended signal). The two criteria guaranteed the selection of components with a clearly 
defined alpha- amplitude peak over the noise- threshold defined by  f−1

  (see Figure 3).

Particularly the combination of SSD with narrow- band filtering in the alpha- frequency range lowers 
the probability of signal contamination elicited by artefact- related oscillations, which are typically 
strongest in frequency ranges above (e.g., muscular activity; Muthukumaraswamy, 2013) or below 
the alpha band (e.g., skin potentials, Kappenman and Luck, 2010, or eye blinks, Manoilov, 2007; 
for a comprehensive overview, see also Chaumon et al., 2015). Decoding models (SPoC, CSP, LSTM; 
described below) were trained on those subjects with at least four selected SSD components (26 
in the nomov and 19 in the mov). On average, 7.63 of 18.81 (40.53 %) in the nomov and 5.63 of 
15.22 (36.98 %) SSD components were selected in the mov condition. Importantly, SSD components 
had spatial topographies corresponding to occipito- parietal and fronto- central source locations, thus 
covering brain areas previously implicated in emotional arousal and its regulation.

Source power comodulation
To test the hypothesis that alpha power in the EEG negatively covaries with the continuous level of 
subjective emotional arousal, SPoC (as described in Dähne et al., 2014; NB: throughout the paper, 
‘SPoC’ refers to SPoCλ) was applied to EEG data composed of the selected SSD components and 
filtered around the central individual alpha peak. Formally, SPoC is an extension of CSP (see below) 
for regression- like decoding of a continuous target variable. The information contained in the target 
variable is used to guide the decomposition of neural components that is correlated or anti- correlated 
with it (Dähne et al., 2014). SPoC has been shown to outperform more conventional approaches to 
relate neural time series to continuous behavioural variables (e.g., correlating power extracted in 
sensor space and/or after blind source separation methods), which also suffer from additional draw-
backs (e.g., lack of patterns’ interpretability and lack of adherence to the M/EEG generative model; 
for details, see Dähne et al., 2014). The supervised decomposition procedure takes the variable z 
as target, which comprises the continuous arousal ratings (normalized and mean- centred; 270 s per 
participant). To reach the same temporal resolution as z (i.e., 1 Hz), EEG data were epoched into 
270 consecutive segments of 1 s length. For a specific epoch  

(
e
)
  , the power of an SPoC component 

Figure 3. Schematic of the selection of individual alpha components using spatio- spectral decomposition (SSD). 
(Left) 1/f estimation (dotted grey line) to detrend SSD components (solid turquoise line). (Right) After detrending 
the signal, components were selected, whose peak in the detrended alpha window (centred at the individual alpha 
peak, vertical dotted grey line) was (A) > 0.35 V2/Hz (indicated by horizontal dotted red line) and (B) higher than the 
bigger of the two mean amplitudes of the adjacent frequency flanks (2 Hz width).

https://doi.org/10.7554/eLife.64812
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( ̂s = WTX  , where  WT   corresponds the transpose of the unmixing matrix  W   and  X   to the data matrix of 
 e  in SSD space) can be approximated by the variance of its signal within that time interval ( Var[̂s](e) ; 
Dähne et al., 2014). SPoC was separately applied to each participant, producing a number of compo-
nents equal to the number of previously selected SSD components. The stability and significance 
of the extracted components was tested with a permutation approach (1000 iterations): z values 
were shuffled to create a surrogate target variable with randomized phase but same auto- correlation 
(Theiler et  al., 1992; adapted from the original SPoC function: https:// github. com/ svendaehne/ 
matlab_ SPoC/ blob/ master/ SPoC/ spoc. m; Dähne, 2015, Dähne et al., 2014). In accordance with the 
primary objective of SPoC to reconstruct the target variable z, lambda values (λ, i.e., optimization 
criterion of SPoC: component- wise covariance between z and alpha power; sorted from most posi-
tive to most negative) and corresponding Pearson correlation values (r) between z and the estimated 

zest (obtained via 
 
zest = Var

[
W

(
i
)

TX
] (

e
)
 
) were then calculated for each iteration to generate a naive 

probability density function (i.e., null hypothesis distribution) and to estimate the probability that the 
correlation value that was calculated with the original target variable z was obtained by chance. Of 
note, zest denotes the power time course of the spatially filtered signal that maximally covaries with the 
behavioural variable z. Depending on i (i.e., from which side of the SPoC unmixing matrix the compo-
nent is chosen), zest will be (maximally) positively (left side of the matrix) or (maximally) negatively (right 
side of the matrix) correlated with z. Given our main hypothesis of an inverse relationship between 
alpha power and self- reported emotional arousal, we therefore only retained, for each participant, the 
component with the most negative (precisely: ‘smallest’) lambda value λ (disregarding the p- value to 
avoid circularity; Kriegeskorte et al., 2009), corresponding to the last column of the unmixing matrix 
 W  .

In line with our hypothesis, single participants’ p- values were then obtained by computing the 
number of permuted r values that were smaller than the one estimated with SPoC.

Crucially, since the extracted linear spatial filters  W   cannot be directly interpreted (Haufe et al., 
2014b), topographical scalp projection of the components are represented by the columns of the 
spatial patterns matrix  A  obtained by inverting the full matrix  W   (Figure 6).

Common spatial patterns
To further test the hypothesis of a link between alpha power and subjective emotional arousal, we 
aimed to distinguish between the most and the least arousing phases of the experience by using 
features of the alpha bandpower of the concurrently acquired EEG signal. We followed an approach 
which has successfully been used in BCI research to discriminate between event- or state- related 
changes in the bandpower of specific frequency ranges in the EEG signal: the common spatial patterns 
algorithm specifies, by means of a generalized eigenvalue decomposition, a set of spatial filters to 
project the EEG data onto components whose bandpower maximally relates to the prevalence of 
one of two dichotomous states (Blankertz et al., 2008; Ramoser et al., 2000). In our case, we were 
interested in distinguishing moments that had been rated to be most (top tertile) and least arousing 
(bottom tertile).

Using the EEGLAB extension BCILAB (RRID:SCR_007013, v1.4- devel; Kothe and Makeig, 2013), 
data of the selected SSD components, bandpass filtered around the individual alpha peak ±2 Hz, 
were epoched in 1 s segments. This sample length was chosen to enable the extraction of neural 
features and corresponding changes in the subjective experience, while maximizing the number 
of samples from the sparse datasets. Epochs with mid- level arousal ratings (middle tertile) were 
discarded, yielding 180 epochs (90 per class) for each subject (per movement condition). To assess 
the classification performance, a randomized 10- fold cross- validation procedure, a common solution 
for sparse training data (Bishop, 2006), was used. Per fold, a CSP- based feature model was calcu-
lated on the training data by decomposing the signal of the selected SSD components according 
to the CSP algorithm. A feature vector comprising the logarithmized variance of the four most 
discriminative CSP components (using two columns from each side of the eigenvalue decomposition 
matrix as spatial filters) was extracted per epoch. Data from the training splits were used to train a 
linear discriminant analysis (LDA) on these feature vectors (Fisher, 1936). Covariance matrices used 
for calculating the LDA were regularized by applying the analytic solution implemented in BCILAB 
(Ledoit and Wolf, 2004). The LDA model was then used to classify the feature vectors extracted from 
the epochs in the test split to predict the according arousal label. Average classification accuracy 

https://doi.org/10.7554/eLife.64812
https://github.com/svendaehne/matlab_SPoC/blob/master/SPoC/spoc.m
https://github.com/svendaehne/matlab_SPoC/blob/master/SPoC/spoc.m
https://identifiers.org/RRID/RRID:SCR_007013
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(defined as  1 − misclassification rate ) over the 10 folds was taken as the outcome measure to assess 
the predictive quality of the approach. To allow a spatial interpretation of the projections, like with 
the SPoC components, the spatial patterns of the two most extreme CSP components (associated 
with the largest and smallest eigenvalue) that were used to calculate the feature vectors for the linear 
classification were plotted in Figure 6 (normalized and averaged across subjects per condition) and 
Figure 6—figure supplement 1 (per single subject and condition). Source localized patterns are 
shown in Figure 9.

Sub-blocked cross-validation
For non- stationary, auto- correlated time- series data, randomized cross- validation can inflate the 
decoding performance (Roberts et al., 2017). To assess and minimize this possibility, we tested 
whether a blocked cross- validation, which preserves temporal neighbourhood structures among 
samples, changes the classification results of the CSP analysis. To ensure balanced classes in the 
training set, the ‘synthetic minority oversampling technique’, which oversamples the less frequently 
represented class, was applied (Chawla et al., 2002; as implemented in Larsen, 2021). The test set 
was left unbalanced as oversampling of test data can invalidate the assessment of model perfor-
mance (Altini, 2015), and the area under the curve of the receiver operating characteristic (ROC- 
AUC) was used as a performance measure. To avoid homogeneous test sets (i.e., with samples from 
only one target class), which (1) would occur in many subjects after ‘conventional’ chronological 
cross- validation and (2) would preclude ROC- AUC calculation, a ‘sub- blocked’ cross- validation was 
used: for each subject, the dataset was split into three sub- blocks of equal length, which were then 
used to stratify the data assignment for a (sub- blocked) chronological 10- fold cross- validation. In 
this design, each fold consists of a concatenation of equally sized stretches of consecutive data 
samples taken from each of the sub- blocks: for example, to build the validation set in the first fold 
[x1, x2, x3], with xi being the n first samples from the ith sub- block where n is the total number of 
samples in the dataset divided by 10 * 3 (number of folds * number of sub- blocks). Thereby the 
temporal neighbourhood structure among data samples is largely preserved when splitting them 
into training and testing sets. The (smaller) test set is still sampled from different parts of the 
experience, which decreases the risk of obtaining homogeneous test sets (e.g., only ‘low arousing’ 
sections).

Source localization
Exact low- resolution tomography analysis (eLORETA, RRID:SCR_007077; Pascual- Marqui, 2007) was 
used to localize the sources corresponding to the component extracted via SPoC and CSP. Our pipe-
line was based on the work of Idaji et al., 2020, who customized the eLORETA implementation of the 
M/EEG Toolbox of Hamburg (https://www. nitrc. org/ projects/ meth/).

Our forward model was constructed via the New York Head model (Haufe et al., 2014b; Haufe 
and Ewald, 2019; Huang et al., 2016) with approximately 2000 voxels and by using 28 out of 30 scalp 
electrodes (TP9 and TP10 were removed because they are not contained in the model). Crucially, we 
focused on dipoles perpendicular to the cortex. eLORETA was then used to construct a spatial filter 
for each voxel from the leadfield matrix, and respective sources were computed by multiplying the 
resultant demixing matrix with the spatial patterns  A  of the selected SPoC and CSP components. 
Inverse modelling was computed separately per participant and condition before it was averaged for 
each condition across all subjects (Figure 9).

LSTM RNN
Deep learning models have become a useful tool to decode neural information (e.g., Agrawal et al., 
2014; Khaligh- Razavi and Kriegeskorte, 2014). Applying a deep learning approach to the time series 
of EEG recordings (e.g., Bashivan et al., 2016) can be achieved using LSTM RNNs (Hochreiter and 
Schmidhuber, 1995; Hochreiter and Schmidhuber, 1997). With their property to store and control 
relevant information over time, they can find adjacent as well as distant patterns in (time) sequential 
data. The LSTM analysis was implemented in the Python- based (RRID:SCR_008394) deep learning 
library TensorFlow (RRID:SCR_016345, v1.14.0; Google Inc, USA; Abadi et al., 2015; Zaremba et al., 
2015).

https://doi.org/10.7554/eLife.64812
https://identifiers.org/RRID/RRID:SCR_007077
https://www.nitrc.org/projects/meth/
https://identifiers.org/RRID/RRID:SCR_008394
https://identifiers.org/RRID/RRID:SCR_016345
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Model architecture and hyperparameter search
Deep learning models usually have a high variance due to random weight initialization, architectural 
choices, and hyperparameters (HPs; Geman et al., 1992; but see Neal et al., 2019). We here used a 
two- step random search (Bergstra and Bengio, 2012) strategy in order to find optimal HPs, to reduce 
the model variance and make the search computationally feasible. First, a broad random search was 
applied on a random subset of 10 subjects (20 random combinations) in each condition. Then, the two 
best HPs per subject were taken and applied to the datasets of all subjects. Due to time constraints and 
computational complexity, the HP search was limited to a predefined range of settings and the model 
architecture was constrained to maximal two LSTM layers followed by maximal two fully connected 
layers (FC; Hefron et al., 2017; see Figure 4). Each layer size lsl varied between 10 and 100 nodes (lsl 
∈ 10, 15, 20, 25, 30, 40, 50, 65, 80, 100), and a successive layer needed to be equal or smaller in size 

Figure 4. Schematic of the long short- term memory (LSTM) recurrent neural network (RNN). At each training step, 
the LSTM cells successively slide over 250 data arrays of neural components (xt=0, xt=1,..., xT=249) corresponding to 
1 s of the EEG recording. At each step t, the LSTM cell computes its hidden state ht. Only the final LSTM output 
(hT) at time- step T = 249 is then fed into the following fully connected (FC) layer. The outputs of all (LSTMs, FCs) 
but the final layer are normalized by rectified linear units (ReLU) or exponential linear units (ELU). Finally, the 
model prediction is extracted from the last FC layer via a tangens hyperbolicus (tanh). Note: depending on model 
architecture, there were one to two LSTM layers, and one to two FC layers. The hyperparameter constellations that 
yielded the highest accuracy for the individual participants per movement condition are available as Figure 4—
source data 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Source data 1. Long short- term memory (LSTM) hyperparameter search per movement condition.

https://doi.org/10.7554/eLife.64812
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(bottleneck architecture). The output of each layer was squashed through either rectified linear units 
or exponential linear units, which both allow for steeper learning curves in contrast to conventional 
activation functions such as sigmoid nonlinearity (Clevert et al., 2016). The output of the last network 
layer (FCL) was fed into a tangens hyperbolicus (tanh) to match the binned ratings, which were labelled 
with –1 or 1, respectively. We applied a mean- squared error loss to calculate the difference between 
the model output (i.e., the prediction) and the labels, leading to a stronger weighting of losses at the 
upper- or lower- class border, respectively. To control and tax too large model weights, different regu-
larization methods (L1, L2) with different regularization strengths (Λ ∈ 0.00, 0.18, 0.36, 0.72, 1.44) 
were tested. Weights were optimized using Adam (learning rate: lr ∈ 1e–2, 1e–3, 5e–4) due to its fast 
convergence (Marti, 2015; see also Ruder, 2017). The number of input components (SSD, Ncomp: N ∈ 
[1, 10]) was treated as HP. The specific Ncomp neural components were successively drawn according to 
the order of the SSD selection.

Training procedure
The final dataset per subject was a three- dimensional tensor of size 270 × 250 × 10 (epochs × samples 
× components). If less than 10 components were extracted for a given subject, the tensor was filled 
with zero vectors. After some test runs and visual observation of the convergence behaviour of the 
learning progress, training iterations were set to 20 (i.e., the model ran 20 times through the whole 
training dataset). The 1 s samples were fed into the LSTM in random mini- batches of size 9 (bs = 9), 
since training on batches allows for faster and more robust feature learning (Ruder, 2017), leading to 
the following input tensor at training step ts:  x

bsx250x10
train,ts   .

Statistical evaluation
To test whether the results of the binary modelling approaches (CSP, LSTM) were statistically signifi-
cantly above chance level, exact binomial tests were conducted per subject and experimental condi-
tion (nomov, mov) over all 180 epochs of the respective time series (nomov, mov). To do so, for each 
of the binary modelling approaches (CSP, LSTM), the predictions for the single epochs in the 10 test 
splits of the cross- validation were concatenated to a single vector. The proportion of correct and false 
predictions was then compared to a null model with prediction accuracy 0.5 (chance level). To test 
the average (across subjects) classification accuracies of the binary models, we calculated one- sided 
one- sample t-tests, comparing the mean accuracy of the respective model for both experimental 
conditions against the theoretical prediction accuracy of a random classifier (0.5). To test whether 
classification accuracies differed between the two models (CSP, LSTM) or between the experimental 
conditions (nomov, mov), a repeated- measures two- way ANOVA was conducted on the accuracy 
scores of all subjects with preprocessed data from both conditions (n = 18).

To account for potential biases due to auto- correlations in the time series which might affect the 
statistical evaluation of the classification model, in an additional control analysis, block permutation 
testing was applied to the CSP approach: to maintain a local auto- correlative structure similar to the 
original data in the permuted target vectors, the time series were split into 10 equally sized blocks, 
which were then shuffled while the internal temporal structure of each block remained intact (Winkler 
et al., 2014). To test whether the actual decoding scores (from non- permuted data) were significantly 
above chance level, we assessed their percentile rank in relation to the null distributions (1000 permu-
tations) on the single- subject level. On the group level, one- sided paired t- tests were used to compare 
the distribution of the actual decoding results against the distribution of the means of the null distri-
butions per subject. Due to its high computational processing cost and duration, we did not perform 
permutation testing for the LSTM model.

For SPoC, in addition to the aforementioned within- participants permutation approach yielding a 
single p- value for each component, group- level statistics were assessed: the hypothesis of a negative 
correlation between alpha power and emotional arousal was tested with a one- sample, one- tailed 
t- test on the correlation values between z and zest, which assessed whether the mean correlation value 
per condition was significantly lower than the average of the permuted ones.

The code for preprocessing of the data, the three prediction models, and the statistical evalua-
tion is available on GitHub (https:// github. com/ NeVRo- study/ NeVRo; Hofmann et al., 2021; copy 
archived at swh:1:rev:669d5c2d6c73cbb70422efb933916fe8304195b5).

https://doi.org/10.7554/eLife.64812
https://github.com/NeVRo-study/NeVRo
https://archive.softwareheritage.org/swh:1:dir:b3468cf3e097ca0e3895c0df3df43d0308dd7ced;origin=https://github.com/NeVRo-study/NeVRo;visit=swh:1:snp:371d20714cc61dc507acc50316bc42894bc8679c;anchor=swh:1:rev:669d5c2d6c73cbb70422efb933916fe8304195b5
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Control analysis: excluding the break for model training
The 30 s break differed from the rollercoaster rides in visual features (e.g., static vs. dynamic input) 
and in arousal ratings, which were constantly relatively low during the break (see Figure 5). Thus, the 
break contributed mainly to the ‘low arousing’ class. To test whether the decoding approaches also 
succeed if the break section is excluded from the analysis, SPoC and CSP decoding were repeated 
for the data without the break, that is, the rollercoasters only (240 s in total). The LSTM approach 
was skipped in this control analysis due to its computational processing cost and duration, and the 
comparable performance with CSP in the main analysis. For the classification (CSP), the tertile split 
on the subjective arousal ratings was recalculated such that the class of ‘low arousal’ segments now 
comprises the least arousing sections of the rollercoasters. We then trained and tested the SPoC and 
CSP models with the procedures that were used for the original dataset (incl. the break). For maximal 
stringency, we used the sub- blocked cross- validation and block permutation approach to assess the 
performance of the CSP model. To test whether excluding the break changed the model performance, 
we compared the distributions of the decoding performance parameters (SPoC: Pearson correlation 

Figure 5. Subjective emotional arousal ratings (movement condition). Emotional arousal ratings of the experience (with head movement; see 
Figure 5—figure supplement 1 for the ratings from the no- movement condition). Coloured lines: individual participants; black line: mean across 
participants; vertical lines (light grey): beginning of the three phases (Space Coaster, Break, Andes Coaster); vertical lines (dark grey): manually labelled 
salient events (for illustration). Bottom row: exemplary screenshots of the virtual reality (VR) experience. The ratings for the condition without head 
movement are shown in the figure supplement.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Subjective emotional arousal ratings (no- movement condition). 

https://doi.org/10.7554/eLife.64812
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with target; CSP: ROC- AUC) from the data with and without the break using two- sided paired t- tests. 
We did this per model and movement condition.

Results
Participants
Forty- five healthy young participants (22 men, M ± SD: 24.6 ± 3.1, range: 20–32 years) completed 
the experiment. Data from eight participants needed to be discarded due to technical problems (n 
= 5) or electrode malfunctioning (n = 1); one participant discontinued the experiment and another 
participant reported having taken psychoactive medication. The data from 37 participants entered the 
analysis (17 men, age: M ± SD: 25.1 ± 3.1, range: 20–31 years). After quality assurance during the EEG 
preprocessing, data from 26 participants in the condition with no head movement (nomov) and 19 
in condition with free head movement (mov) entered the statistical analyses that included EEG data.

Self-reports
Questionnaires
From before (M ± SD: 8.68 ± 2.82, range: 6–17) to after the experiment (M ± SD: 11.82 ± 5.24, range: 
6–29), the overall simulator sickness (e.g., nausea, headache) increased significantly (t(36) = 3.72, p 
= 0.0007). As the trait questionnaires are not the focus of this study, their results will be reported 
elsewhere.

Emotional arousal ratings
The retrospective emotional arousal ratings for the VR experience, averaged across all subjects and 
timepoints, were 46.94 ± 12.50 (M ± SD, range: 16.17–66.29) in the nomov and 50.06 ± 12.55 (M ± 
SD, range: 18.00–69.94) in the mov condition. Qualitatively, the emotional arousal was highest for the 
Andes Coaster, lower for the Space Coaster, and lowest for the break (see Figure 5).

Neurophysiology
SPoC
SPoC results showed that for 24/26 (92.30%) participants in the nomov and 16/19 (84.21%) partici-
pants in the mov condition (see Figure 10—source data 1 for single- participant results), the compo-
nent with the highest absolute lambda value corresponded to the one that maximized the negative 
correlation between z (normalized and mean- centred subjective ratings) and alpha power. Based on 
permutation- based testing (1000 iterations; exact p values are reported in Figure 10—source data 
1), the negative correlation was statistically significant (p < 0.05) in 8/26 (30.76%) participants for the 
nomov and 7/19 (36.84%) participants for the mov condition. The global mean lambda value of these 
components was –0.46 for the nomov (range: –1.49 to +0.08) and –0.42 for the mov condition (range: 
–1.49 to +0.02). The mean Pearson correlation value between the target variable z and zest (estimated 
target variable) was significantly lower than the average of single participants’ permuted ones for both 
the nomov (M ± SD: –0.25 ± 0.12; range: –0.53 to + 0.09; tnomov(25) = –3.62; p < 0.01) and the mov 
condition (M ± SD: –0.25 ± 0.12; range: –0.52 to +0.04; tmov(18) = –3.13; p < 0.01).

CSP
The classifier based on CSP was able to decode significantly above chance level whether a subject 
experienced high or low emotional arousal during a given second of the experience. On average, 
the classification accuracy was 60.83% ± 7.40 % (M ± SD; range: 47.22–77.78%) for the nomov, and 
60.76% ± 6.58 % (M ± SD; range: 48.33–71.67%) for the mov condition. Both were significantly above 
chance level (tnomov(25) = 7.47, pnomov  < 0.001; tmov(18) = 7.12, pmov  < 0.001). At the single- subject 
level, the classification accuracy was significantly above chance level (p < 0.05) for 17/26 (65.38%) 
participants in the nomov, and for 12/19 (63.16%) participants in the mov condition (see Figure 10—
source data 1 for single- participant results). The spatial patterns yielded by the CSP decomposition 
are shown in Figure 6 (across participants) and in Figure 6—figure supplement 1 (individual partici-
pants). Corresponding alpha power sources (located via eLORETA) are shown in Figure 9.

https://doi.org/10.7554/eLife.64812


 Research article      Neuroscience

Hofmann, Klotzsche, et al. eLife 2021;10:e64812. DOI: https:// doi. org/ 10. 7554/ eLife. 64812  16 of 34

To test for potential biases from the model or the data, specifically its auto- correlative properties, 
we ran a control analysis for CSP using sub- blocked chronological cross- validation and block permu-
tation for statistical evaluation on the single- subject level.

Also under these – more strict – evaluation criteria, the average decoding performance (ROC- 
AUC) for CSP was significantly above chance level, both in the nomov (ROC- AUC: 0.61 ± 0.09 M ± 
SD, range: 0.42–0.79; t(25) = 4.59, p < 0.001) and in the mov condition (ROC- AUC: 0.60 ± 0.09 M ± 
SD, range: 0.44–0.74; t(18) = 3.27, p < 0.01). On the single- subject level (as assessed by permutation 

... ...

Figure 6. Spatial patterns resulting from spatio- spectral decomposition (SSD), source power comodulation (SPoC), and common spatial pattern (CSP) 
decomposition. Colours represent absolute normalized pattern weights (inverse filter matrices) averaged across all subjects per condition (nomov: 
without head movement, mov: with head movement). Before averaging, the pattern weight vectors of each individual subject were normalized by their 
respective L2- norm. To avoid cancellation due to the non- polarity- aligned nature of the dipolar sources across subjects, the average was calculated 
from the absolute pattern weights. SSD allows the extraction of components with a clearly defined spectral peak in the alpha frequency band. Shown 
are the patterns associated with the four SSD components that yielded the best signal- to- noise ratio (left column). The SSD filtered signal was the input 
for the decoding approaches SPoC, CSP, and LSTM: SPoC adds a spatial filter, optimizing the covariance between the continuous emotional arousal 
ratings and alpha power. Shown here is the pattern of the component which – in line with our hypothesis – maximized the inverse relationship between 
emotional arousal and alpha power. CSP decomposition yielded components with maximal alpha power for low- arousing epochs and minimal for high- 
arousing epochs (bottom row in the CSP panel) or vice versa (upper row in the CSP panel). The high correspondence between the patterns resulting 
from SPoC and CSP seems to reflect that both algorithms converge to similar solutions, capturing alpha power modulations in parieto- occipital regions 
as a function of emotional arousal. The spatial patterns for the individual subjects are displayed in the figure supplement. (Note: as the LSTM results 
cannot be topographically interpreted, they are not depicted here.)

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Spatial patterns per single subject and movement condition yielded by the different spatial signal decompositions. 

https://doi.org/10.7554/eLife.64812
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tests), decoding performance was significantly (p < 0.05) higher when decoding the actual, unper-
muted labels compared to the block- permuted labels for 9/26 (34.62%) participants in the nomov and 
5/19 (26.32%) participants in the mov condition.

LSTM
After a random search over a constrained range of HPs, we extracted the best individual HP set per 
subject (see Figure 4—source data 1 for the list of best HPs per condition). The mean classification 
accuracy was 59.42% ± 4.57 % (M ± SD; range: 52.22–68.33%) for the nomov, and 61.29% ± 4.5 % 
(M ± SD; range: 53.89–71.11%) for the mov condition. Both were significantly above chance level 
(tnomov(25) = 10.82, pnomov < 0.001; tmov(16) = 10.51, pmov < 0.001). At the single- subject level, the clas-
sification accuracy was significantly above chance level for 16/26 (61.54%) participants in the nomov 
condition, and for 16/19 (84.21%) participants in the mov condition (same test as for CSP results; see 
Figure 10—source data 1).

Comparison of model performances
As an illustration of the prediction behaviour across all three models in one participant (with high 
performance for all three decoding approaches), see Figure 7. Correlations of performances across 
models and experimental conditions are shown in Figure 10. The (positive) correlation between the 
two binary classification approaches (CSP, LSTM) was significant (after Bonferroni multiple- comparison 
correction), irrespective of the experimental condition (nomov, mov), meaning that subjects who 
could be better classified with CSP also yielded better results in the LSTM- based classification. In a 
repeated- measures ANOVA testing for differences in the accuracies of the two binary classification 
models (CSP, LSTM) and the two conditions (nomov, mov), none of the effects was significant: neither 
the main effect model (F(1,17) = 0.02, p = 0.904) nor the main effect condition (F(1,17) = 0.72, p = 
0.408) or their interaction (F(1,17) = 1.59, p = 0.225). For a further comparison of the performances 
of the classification approaches, the respective confusion matrices are depicted in Figure 8 (average 
across the subjects per condition and model).

Control analysis: excluding the break from model training
SPoC and CSP performed significantly above chance level also when trained and tested on data 
without the break section.

For CSP on data without the break, the average classification performance (ROC- AUC) was 0.57 ± 
0.10 (M ± SD; range: 0.28–0.78) in the nomov and 0.59 ± 0.09 (M ± SD; range: 0.45–0.77) in the mov 
condition (see previous paragraph for the decoding performance with the break included). Average 
model performances were still significantly above chance level (means of the block permutation distri-
butions on the single- subject level) in both movement conditions (nomov: t(25) = 2.89, p < 0.01; mov: 
t(18) = 3.50, p < 0.01). On the single- subject level, the classification performance was significantly 
above chance level for 3/26 (11.54%) participants in the nomov and 5/19 (26.32%) participants in the 
mov condition.

For SPoC on data without the break, the average Pearson correlation between z and zest (esti-
mated target variable) was significantly smaller (more negative) than the average of single partici-
pants’ permuted correlation values for both the nomov (M ± SD: –0.22 ± 0.08; range: –0.36 to –0.07; 
tnomov(25) = –3.17; p < 0.01) and the mov condition (M ± SD: –0.21 ± 0.07; range: –0.37 to –0.061; 
tmov(18) = –2.53; p < 0.05). On the single- subject level, 2/26 (7.69%) participants for the nomov and 
7/19 (36.84%) participants for the mov condition remained statistically significant (p < 0.05) after 
permutation- based tests.

Removing the break from the training data overall numerically decreased the decoding perfor-
mances of both models. For CSP, the decrease was significant in the nomov (t(25) = 2.23, p = 0.034) 
and not significant in the mov condition (t(18) = 0.57, p = 0.58). For SPoC, the decrease (Pearson 
correlation) was not significant in both conditions (nomov: t(25) = –1.66, p = 0.108; mov: t(18) = –1.13, 
p = 0.269).

https://doi.org/10.7554/eLife.64812
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Figure 7. Exemplary model predictions. Predictions (turquoise line, dots) across models trained on the data of one participant in the movement 
condition (source power comodulation [SPoC]: normalized negative zest, here comodulation; common spatial patterns [CSP]: posterior probability; 
long short- term memory [LSTM]: tanh output). Top row: most negatively correlating SPoC component (for visualization we depict the normalized 
and mean- centred value of the rating and of the negative square root of zest). Middle and lower row: model predictions on validation sets (across the 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.64812
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Discussion
The general aim of this study was to capture the dynamic relationship between subjective experi-
ence and neurophysiology under naturalistic stimulation using immersive VR. The hypothesized link 
between EEG alpha power and self- reported emotional arousal could be confirmed by relating alpha 
power components to continuous retrospective ratings of emotional arousal (using SPoC) as well 
as by decoding states of higher and lower emotional arousal from them (using CSP and LSTMs), 
particularly in parieto- occipital regions. In addition to extending our knowledge about the functional 
anatomy of emotional arousal, these findings support previous results from classical studies and 
confirm them under more naturalistic conditions. They thereby pave the way for real- world scenarios 
and applications.

Physiological and psychological concomitants of emotional arousal
In studies with event- related stimulation or block designs, more emotionally arousing compared to 
less emotionally arousing images, videos, and sounds were associated with event- related decreases 
in alpha power, predominantly over parieto- occipital electrodes (De Cesarei and Codispoti, 2011; 
Luft and Bhattacharya, 2015; Schubring and Schupp, 2019; Uusberg et al., 2013; Koelstra et al., 
2012). While such stimuli provide a high degree of experimental control in terms of low- level proper-
ties and presentation timings, the emotional experience and its neurophysiology under event- related 

cross- validation splits) for CSP and LSTM, respectively. The grey curvy line in each panel indicates the continuous subjective rating of the participant. 
Horizontal dotted lines indicate the class borders. The area between these lines is the mid- tertile which was discarded for CSP and LSTM analyses. 
Class membership of each rating sample (1 s) is indicated by the circles at the top and bottom of the rating. A model output falling under or above the 
decision boundary (db) indicates the model prediction for one over the other class, respectively. The correct or incorrect prediction is indicated by the 
colour of the circle (green and red, respectively), and additionally colour- coded as area between model output (turquoise) and rating.

Figure 7 continued

Figure 8. Comparison of the binary decoding approaches. Confusion matrices of the classification accuracies for 
higher and lower self- reported emotional arousal using long short- term memory (LSTM) (lower row) and common 
spatial patterns (CSP) (upper row) in the condition without (left column) and with (right column) head movement. 
The data underlying this figure can be downloaded as Figure 8—source data 1.

The online version of this article includes the following source data for figure 8:

Source data 1. Prediction tables of the binary decoding models.

https://doi.org/10.7554/eLife.64812
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stimulation may differ from the emotional experience in real- life settings, which is perceptually 
complex, multisensory, and continuously developing over time.

Our results provide evidence that the neural mechanisms reflected in modulations of alpha power 
– particularly in parieto- occipital regions – also bear information about the subjective emotional state 
of a person undergoing an immersive and emotionally arousing experience. Also fMRI studies have 
related brain activity in parietal cortices and emotional processing (e.g., Lettieri et al., 2019). Our 
study thus suggests that findings from event- related, simplified stimulation generalize to more natu-
ralistic (i.e., dynamic and interactive) settings.

Paralleling the idea of emotional arousal being a dimension of ‘core affect’ (Russell and Barrett, 
1999) and a psychological primitive that underlies many mental phenomena, also alpha oscillations 
have been connected to various psychological ‘core processes’: for instance, modulations of alpha 
power were linked to attention (Van Diepen et al., 2019) and memory (Klimesch, 2012). More 
generally, neural oscillations in the alpha frequency range were suggested to serve functional 

Figure 9. Source reconstructions (exact low resolution tomography analysis [eLORETA]). The projection of source power comodulation (SPoC) and 
common spatial patterns (CSP) components in source space confirms the link between emotional arousal and alpha oscillations in parieto- occipital 
regions. Colours represent the inversely modelled contribution of the cortical voxels to the respective spatial pattern yielded by SPoC or CSP (max: 
component maximizing power for epochs of high arousal; min: component minimizing power for epochs of high arousal). We applied the same 
normalization and averaging procedures as for the topoplots in Figure 6. Upper row: averaged across all subjects per condition (nomov, mov). Lower 
row: patterns of one individual (the same as in Figure 7).

https://doi.org/10.7554/eLife.64812
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inhibition of irrelevant sensory input (Jensen and Mazaheri, 2010; Foster and Awh, 2019) and to 
code for the location and the timing of task- relevant stimuli (Foster et al., 2017). Such processes 
can be functionally linked to emotional arousal: during emotionally arousing experiences, preferred 
and enhanced processing of relevant sensory stimuli (e.g., indicating potential threats) is an adap-
tive behaviour. In line with this, modulations of alpha oscillations over parietal sensors have been 
linked to threat processing (Grimshaw et  al., 2014). Variations in emotional arousal and alpha 
power may, thus, have guided attention and memory formation also in our experiment: during 
particularly arousing parts of the rollercoaster, participants may have directed their attention 
to specific parts of the visual scene, for example, to foresee the end of the looping. Moreover, 
our inverse modelling (Figure 9) has also localized arousal- related alpha sources in sensorimotor 
cortices, which could correspond to somatic experiences typically associated with rollercoasters. 
Some of the averaged spatial patterns (see Figures  6 and 9) we observed for the SPoC- and 
CSP- based decoding stronger absolute weights for electrodes above right – as compared to left 
– cortices. Since we did not hypothesize a lateralization of the alpha effects, we refrained from 
statistically testing differences between the hemispheres. Similar patterns of right- lateralized alpha 
oscillations have also been related to arousal in major depression (Metzger et al., 2004; Stewart 
et al., 2011). However, it is unclear to which extent these effects are specific to arousal, as later-
alization of alpha power has also been observed in working- memory (Pavlov and Kotchoubey, 
2020) and resting- state studies (Ocklenburg et al., 2019). Our results motivate experimental work 
that will model the link between emotional arousal and alpha oscillations by systematically varying 
additional variables (e.g., attention, sensorimotor processing). We argue that studying such rela-
tionships in naturalistic settings allows embracing and learning statistical interdependencies that 
are characteristics of the real world.

VR as a step towards a real-world neuroscience
More naturalistic experimental stimulation, for example, using immersive VR, allows to test the brain 
under conditions it was optimized for and thereby improve the discovery of neural features and 
dynamics (Gibson, 1978; Hasson et al., 2020). Findings from naturalistic studies can test the real- 
world relevance of results obtained in highly controlled, abstract laboratory settings (Matusz et al., 
2019; Shamay- Tsoory and Mendelsohn, 2019). Challenges of using VR for more naturalistic research 
designs are the creation of high- quality VR content, more complex technical setups, and discomfort 
caused by the immersion into the virtual environment (Pan and Hamilton, 2018; Vasser and Aru, 
2020). Despite the incongruence between VR rollercoaster- induced visual stimulation and vestibular 
signals, which may lead to motion sickness (Reason and Brand, 1975), only one of our participants 
stopped the experiment because of cybersickness. This low number may result from the relatively 
short length of the VR experience (net length: <20 min) and the professionally produced VR stimu-
lation. Shorter exposure times (Rebenitsch and Owen, 2016) and experiences that elicit stronger 
feelings of presence have been associated with lower levels of cybersickness (Weech et al., 2019).

Combining EEG with VR provides additional challenges: the signal- to- noise ratio (SNR) can be 
decreased due to mechanical interference of the VR headset with the EEG cap and due to movement 
artefacts when the participant interacts with the virtual environment (e.g., head rotations). To ensure 
high data quality, we applied multiple measures to prevent, identify, reject, or correct artefacts in the 
EEG signal (see Materials and methods section for details). Ultimately, the performance of all three 
decoding models did not differ significantly for both conditions (nomov, mov). We suggest that, with 
appropriate quality assurance during data acquisition and analysis (leading to more data rejection/
correction for mov than for nomov), EEG can be combined with immersive VR and free head move-
ments. Other studies of mobile brain imaging, even recording outdoors and with full- body move-
ments, came to similar conclusions (Debener et al., 2012; Ehinger et al., 2014; Gramann et al., 
2011; Symeonidou et al., 2018).

Evaluating EEG data from naturalistic experiments using 
complementary methods
Each of the applied decoding approaches allows for different insights and interpretations, but overall, 
they yield converging results.

https://doi.org/10.7554/eLife.64812
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SPoC and CSP
SPoC and CSP share advantages that are common to most spatial filtering methods based on gener-
alized eigenvalue decomposition, namely precise optimization policies, high speed, and interpret-
ability. As dimensionality reduction techniques, they combine data from multiple M/EEG channels to 
obtain a new signal (component) with a higher SNR (Lotte et al., 2018; Parra et al., 2005). This aids 
maximizing the difference in the signal of interest between experimental conditions (de Cheveigné 
and Parra, 2014; Rivet et al., 2009) or against signals in the neighbouring frequency ranges (Nikulin 
et  al., 2011). The similarity between the two approaches (SPoC, CSP) and their interpretability 
becomes apparent in the resulting spatial patterns: the normalized and averaged SPoC topoplots and 
source localizations in both conditions (nomov, mov) resemble the ones extracted via CSP to maximize 
power for the low- arousal epochs of the experience (Figures 6 and 9). SPoC and CSP solve a similar 
problem here: extracting components whose power is minimal during states of high emotional arousal 
and maximal during states of low arousal.

This indicates that SPoC and CSP exploited similar spatial informational patterns in the input data. 
However, the datasets handed to the SPoC and CSP models were not identical. For the CSP analysis, 
only the upper and lower extreme of the arousal ratings were included (i.e. two- thirds of the data), 
while epochs with medium arousal ratings (i.e., one- third of the data) were excluded, whereas SPoC 
was trained on the full continuous data stream. There are two potential explanations for the observa-
tion that SPoC and CSP nevertheless yield similar spatial patterns: either the most relevant informa-
tion was encoded in the most extreme parts of the experience, or there is a truly linear relationship 
between alpha power and emotional arousal that can be queried on all parts of this spectrum ranging 
from low to high emotional arousal.

The spatial patterns for the components gained from SSD, SPoC, and CSP exhibit discernible 
variance between the single subjects (see Figure 6—figure supplement 1). This can be, for example, 
caused by physiological differences (e.g., different shapes of the skull, different cortical folding) or 
slightly different positioning of the EEG electrodes. The same cortical source might thereby lead to 
different patterns of scalp EEG in different participants. Spatial filtering procedures inverse this projec-
tion and the extracted patterns therefore also vary across subjects. Such inter- individual differences 
are well known for BCIs, and extensions for CSP have been suggested, which allow for a transfer of 
features across subjects (e.g., Cheng et al., 2017). To emphasize the communalities across individual 
patterns and indicate the cortical areas that contributed most to decoding results, we report the aver-
aged patterns (Figure 6) and the averaged results of the reconstructed cortical sources (Figure 9).

To test for confounds or analytic artefacts, for example, due to auto- correlations in the data, we 
additionally applied ‘sub- blocked’ cross- validation for model training and block permutation for statis-
tical evaluation. Also under these more strict evaluation conditions, the average decoding perfor-
mance was significantly above chance level. It is therefore unlikely that the results can be explained 
solely by dependencies in the data (e.g., auto- correlation) which are not explicitly modelled in the 
main analysis.

Moreover, to test the impact of the differences between the rollercoasters and the break, for 
example, regarding visual dynamics and elicited emotional arousal, on the decoding performance, 
SPoC and CSP analyses were repeated on the data without the break. Again, the average decoding 
performances decreased compared to the data with the break, but remained significantly above 
chance level for both head movement conditions. The decrease in decoding performance with the 
break removed may result from (1) less training data being available and (2) a narrower range of 
emotional arousal values, more similar classes (‘high arousal’ and ‘low arousal’), and therefore a more 
difficult distinction.

We observed a high degree of variability in decoding performance across participants (see 
Figure 10). For example, for less than 70 % (and less than 35 % with sub- blocked cross- validation 
and permutation testing) of participants, CSP yielded significant results on the single- subject level. 
This variability reflects the difficulty of some features and classifiers to perform equally well across 
subjects, which has been reported in the BCI literature (Krusienski et al., 2011; Nurse et al., 2015). In 
a supplementary analysis, we compared the classification results to a less complex logistic regression 
model, which was directly trained on time- frequency data from electrodes in the occipital- parietal 
region of interest. The model performed almost on par with CSP in the mov condition but was less 
sensitive in the nomov condition. Linear regression on time- frequency data in sensor space also has 

https://doi.org/10.7554/eLife.64812
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Figure 10. Correlation of performances across methods (source power comodulation [SPoC], common spatial pattern [CSP], long short- term memory 
[LSTM]) and conditions (nomov: without head movement, mov: with head movement). The model performance metrics are classification accuracy (CSP 
and LSTM) and correlation coefficients (SPoC; note: based on our hypothesis of an inverse relationship between emotional arousal and alpha power, 
more negative values indicate better predictive performance). Plots above and below the diagonal show data from the nomov (yellow axis shading, 
upper right) and the mov (blue axis shading, lower left) condition, respectively. Plots on the diagonal compare the two conditions (nomov, mov) for each 
method. In the top left corner of each panel, the result of a (Pearson) correlation test is shown. Lines depict a linear fit with the 95% confidence interval 
plotted in grey. The data underlying this figure can be downloaded as Figure 10—source data 1.

The online version of this article includes the following figure supplement(s) for figure 10:

Source data 1. Decoding results per decoding approach, movement condition, and participant.

https://doi.org/10.7554/eLife.64812
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methodological and conceptual limitations compared to SPoC and CSP, such as underestimating 
sources of noise, disregarding the generative model that underlies EEG data, and consequently a 
limited interpretability (for details, see Dähne et al., 2014). We therefore did not include this analysis 
in the final report.

LSTM
Despite having recently gained more attention with the fast progress of deep learning (e.g., more 
efficient hardware and software implementations), LSTMs still need to stand up to well- established 
models such as CSP for EEG analysis. We found that the LSTM can extract features from neural input 
components that reflect changes in subjective emotional arousal and that the accuracy of its predic-
tions in both conditions (nomov, mov) matched closely the ones of CSP (see Figures 8 and 10). It is 
noteworthy that for the CSP model, the (LDA- based) classification rested on narrowly defined spectral 
features of the signal while for the LSTM model, the input was the signal in the time domain and the 
feature selection process was part of the model fitting. The strong correlation between the predic-
tions of the two models suggests that the LSTM extracts similar information as the CSP to make its 
prediction, namely power. Higher accuracies may be achievable with LSTM models due to their non- 
convex optimization landscape. However, in our two- step HP search, we found that for each subject 
a range of different HP settings led to similar prediction accuracies (see Figure 4—source data 1). 
Model ensembles, although computationally demanding, could further increase the robustness of the 
estimates (Opitz and Maclin, 1999; Rokach, 2010; Dietterich, 2000). Although it is often stated that 
deep learning models require large datasets (for an empirical perspective, see Hestness et al., 2017), 
our model, with its architecture of one to two LSTM layers followed by one to two fully connected 
layers, converged in less than 200 training iterations on a relatively small dataset. This quick conver-
gence is partly due to the fast gradient flow through the memory cell of the LSTM during the weight 
update, which is an additional advantage of the LSTM over other RNNs (Doetsch et al., 2014; Hoch-
reiter and Schmidhuber, 1997). Additionally, the spatial- spectral filtering in our study (i.e., SSD- based 
extraction of narrow- band alpha components) may have eased the training of the LSTM. With more 
data, an LSTM could be trained on raw data or longer segments of the EEG to preserve more of the 
continuous structure and ultimately exploit its central property, as a dynamic model, of detecting 
long- term dependencies in the input.

In contrast to SPoC and CSP, we did not compute explanatory topoplots or sources from the LSTM, 
since the analysis of predictions on input level in non- linear deep learning models constitutes a chal-
lenge in itself (i.e., ‘black box’ problem of deep learning). However, ‘explainable artificial intelligence’ 
(XAI) is an active area of research in machine learning, aiming to open this ‘black box’. For EEG, there 
are attempts to create topologically informative maps in the signal space that explain the decision 
of simple shallow neural networks (Sturm et al., 2016). Also for the more complex LSTM model, XAI 
methods were applied, for example, on text data (Arras et al., 2017; see also Lapuschkin et al., 
2019). However, exploring and validating these approaches on our data was beyond the scope of 
this study.

In summary, we find that SPoC, CSP, and LSTM can be used to decode subjective emotional arousal 
from EEG acquired during a naturalistic immersive VR experience. The source of the alpha oscillations 
could be localized in parieto- occipital regions.

Compared to other EEG decoding paradigms (e.g., lateralized motor imagery; Herman et al., 
2008), the accuracy of our models was relatively low. This may be a consequence of (1) the fast- 
changing events in the VR experience (particularly the rollercoasters), (2) the asynchronicity of the 
two data streams as participants retrieved their emotional states from memory in retrospective 
ratings, (3) the generally high inter- individual variability in the interpretability of subjective self- 
reports (Blascovich, 1990), and (4) the ‘single- trial’ study design and its relatively short time series. 
With respect to (1)–(3), people’s memory for feelings and events is susceptible to distortions and 
biases (Kaplan et al., 2016; Levine and Safer, 2002). Following McCall et al., 2015, we elicited 
the memory recall by showing participants an audiovisual replay of their experience from their 
own perspective in the VR headset while recording continuous ratings. This aimed to minimize 
biases related to the point of view (Berntsen and Rubin, 2006; Marcotti and St Jacques, 2018) 
or timescale (e.g., Fredrickson and Kahneman, 1993) during recall (as discussed in McCall et al., 
2015). Lastly, while our research aimed to explore the role of the alpha frequency band in the 
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appraisal of emotional arousal (see Introduction), higher frequencies could carry additional infor-
mation about the phenomenon leading to better model predictions. However, higher frequency 
bands also include non- neural (e.g., muscle activity- related) signals, limiting the interpretability of 
those results.

Limitations
Our study has limitations that need to be considered when interpreting the results: while being 
engaging, emotionally arousing and tolerable for the subjects, the commercial content used for stim-
ulation did not provide access to the source code in order to control and extract stimulus features 
(e.g., height or speed of the rollercoasters). In general, creating high- quality VR content is a challenge 
for research labs, but there are recent efforts to provide toolboxes that facilitate customized VR devel-
opment and scientific experimentation in VR (e.g., Grübel et al., 2017; Brookes et al., 2020).

The length of the experience was chosen to minimize habituation to the stimulus and inconvenience 
caused by the recording setup (EEG electrodes and VR headset). This led to relatively short recording 
times per subject and condition. Data sparsity, however, is challenging for decoding models, which 
need a sufficient amount of data points for model training and evaluation, where especially larger 
training sets lead to more robust predictions (Hestness et al., 2017). We used cross- validation, which 
is commonly applied in scenarios of limited data, to achieve a trade- off between training and vali-
dation data (Bishop, 2006). Nevertheless, the models and results can be expected to perform more 
robustly with more training data.

We here confirm findings from static stimulation under more naturalistic conditions. To system-
atically investigate differences between approaches, a study with a within- subject design would be 
required. We hope that our study provides a stepping stone and motivation in this direction.

Finally, emotional arousal is a multi- faceted mind- brain- body phenomenon that involves the situ-
ated organism and its interaction with the environment. The training data for multivariate models 
such as the LSTM can include other modalities, such as peripheral physiological (e.g., HR, GSR) or 
environmental (e.g., optical flow) features. Naturalism can be further increased by sensorimotor inter-
action (beyond head movements) in immersive VR (McCall et al., 2015) or by mobile EEG studies in 
real- world environments (Debener et al., 2012), which, however, poses further challenges to EEG 
signal quality (Gwin et al., 2010).

Conclusion
We conclude that different levels of subjectively experienced emotional arousal can be decoded from 
neural information in naturalistic research designs. We hope that combining immersive VR and neuro-
imaging not only augments neuroscientific experiments but also increases the generalizability and 
real- world relevance of neuroscientific findings.
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Appendix 1
Details of the rollercoasters
The ‘Space’ rollercoaster did not feature outstanding events during the ride besides two vertical 
spins starting around 47  and 73 s after the onset of the experience. Virtual collisions of asteroids 
floating through the scenery led to explosions of the celestial bodies involved, accompanied by an 
explosive sound. Apart from this, there were little sound effects during the space experience.

The ‘Andes’ rollercoaster included a steep drop (24 s after onset), two jumps with steep 
landings (31  and 67 s after onset), two passages through fires under the tracks (20 and 55 s after 
onset) and a looping (60 s after onset). Sound effects mimicked the sound of the waggon on the 
tracks, the fire, and the airflow. In the background a jingling melody was played.

Simulator sickness questions
The wording and items to assess simulator sickness were:

Please rate on a scale from 1 to 7 how much each symptom below is affecting you right now:

1. General discomfort
2. Nausea
3. Dizziness
4. Headache
5. Blurred vision
6. Difficulty concentrating.

https://doi.org/10.7554/eLife.64812
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