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ABSTRACT

Bodily signals can complement subjective and behavioral mea-
sures to analyze human factors, such as user engagement or stress,
when interacting with virtual reality (VR) environments. Enabling
widespread use of (also the real-time analysis) of bodily signals
in VR applications could be a powerful method to design more
user-centric, personalized VR experiences. However, technical and
scientific challenges (e.g., cost of research-grade sensing devices,
required coding skills, expert knowledge needed to interpret the data)
complicate the integration of bodily data in existing interactive appli-
cations. This paper presents the design, development, and evaluation
of an open-source software framework named Excite-O-Meter .
It allows existing VR applications to integrate, record, analyze, and
visualize bodily signals from wearable sensors, with the example of
cardiac activity (heart rate and its variability) from the chest strap
Polar H10. Survey responses from 58 potential users determined
the design requirements for the framework. Two tests evaluated the
framework and setup in terms of data acquisition/analysis and data
quality. Finally, we present an example experiment that shows how
our tool can be an easy-to-use and scientifically validated tool for
researchers, hobbyists, or game designers to integrate bodily signals
in VR applications.

Keywords: Bodily Signals, Heart Activity, Software, Architecture,
Experiment, Virtual Reality, Open Source.

Index Terms: Human-centered computing—Interactive systems
and tools—; Human-centered computing—Virtual reality—;——
Computer systems organization—Real-time system architecture—

1 INTRODUCTION

Virtual Reality (VR) technology provides a safe platform to simulate
situations that might be unfeasible or expensive to create in real-life.
Researchers have extensively used VR to understand how humans
perceive and experience both physical and virtual environments
[22]. Neuroscientists and psychologists have developed tools and
established psychological and physiological principles that uncover
the relationships between stimuli and human perception [25, 63].
It has been shown that human perception of the world is not only
determined by features of physical objects; but internal physiological
aspects, such as bodily processes or emotions, can also influence our
perception of the world [55]. For example, perceiving a stimulus
as threatening and experiencing fear is associated with an increased
heart rate (HR), dilated pupils, and sweaty hands. Thus, the coupling
of the central and the autonomic nervous system influences our
perception and interaction with a virtual environment [12, 29, 58].
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Bodily data could be a valuable input for understanding how
users perceive and interact with virtual experiences. As shown in
multiple serious games [40] and clinical applications [27], including
physiological signals might represent a new era of VR, where more
effective interactions maximize the targeted individual user’s gains
(e.g., engagement, productivity, learning). Although this integration
presents advantages and positive impact, the creation of personal-
ized and adaptive VR involves modelling the behavior of each user,
who has unique psychological characteristics (e.g., interests and
expectations) and complex physiological dynamics [28, 64].

Two technological advances of the last decade could support the
widespread creation of systems that combine both bodily data and
VR environments. First, the advent of affordable wearable sensors
can gather reliable physiological data, like smartwatches or chest
straps commonly used for exercising [47]. The development of novel
headsets with embedded physiological sensors is also a trending field
with high potential [2]. Second, the availability of game engines,
like Unity [61], has enabled easy creation of interactive 3D scenarios
capable of interfacing with external devices.

Although there are affordable and accessible technologies, the
integration of bodily signals in VR still undergoes scientific and
technical challenges [32]. From the scientific side, the extraction of
meaningful features requires domain experts and researchers that
understand the underlying body processes, i.e., principles of psy-
chophysiology [6]. Moreover, experimenters need synchronized
data that let them study causality between visual stimuli and physio-
logical responses, mainly because every physiological phenomenon
has a different response time [6]. From the technical standpoint, the
main stages of real-time data analysis (acquisition, feature extraction,
and visualization [38]) are inherently compatible with the game en-
gines for simulations in robotics or computer vision. However, these
platforms are not fully adapted to conduct the real-time analysis on
data incoming from external physiological sensors [35].

In this paper, we present the design, development, and evaluation
of the Excite-O-Meter . An open-source software framework that
allows developers, researchers, and hobbyists to integrate bodily
signals in custom VR applications in Unity game engine [61]. The
design requirements were created from potential users that answered
an online survey. This first version of the tool integrates heart activity
from the commercial electrocardiography (ECG) chest strap Polar
H10 [50], provides real-time analysis of heart rate and its variability
(HRV) features, and offers easy online/offline signal visualization.
The tool lets non-experts integrate heart data in VR environments
or facilitates scientific studies with psychophysiological research
questions. The architecture can extend more physiological sensors
in the future. Two technical experiments validate the reliability of
the data acquisition/analysis and the current hardware setup (i.e.,
the use of the Polar H10 with VR). A final evaluation exemplifies
how this tool can be used in scientific experiments to propose a
physiology-based metric to estimate “excitement level”.

We present related work in section 2. Design process and system
architecture of the Excite-O-Meter are outlined in sections 3 and
4. The evaluation is outlined in section 5, a feasibility test in section
6, closing with discussion and conclusion in section 7.
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2 RELATED WORK

2.1 Physiology-based adaptive systems

Frameworks like the Excite-O-Meter have been of interest in
fields such as affective computing or biocybernetic adaptation. The
main goal is to design systems that adjust their functionalities to
match the skills, emotions, or expectations of a user [11]. Several re-
search projects have attempted to infer psychological states from the
interaction of a user with a system and the monitoring of their body
reactions [35,40,46,53]. Additionally, physiology and VR have been
part of scientific experimentation to design adaptive systems. For ex-
ample, bodily signals have been used to infer relaxation levels during
HRV biofeedback [4], recognize emotions [19], estimate engage-
ment in pilot training [1], classify mental workload in train traffic
control [17], understand readiness level in firearms training [44], or
excitement during VR experiences [21]. Nevertheless, the readiness
of tools is still limited although the importance of integrating body
signals in VR content is generally acknowledged [32].

2.2 Tools to integrate bodily signals in VR

Some commercial and free options have been proposed to add bodily
signals into interactive and immersive virtual environments. The
hardware industry has pioneered some commercial options; for ex-
ample, Emteq1, LooxidLabs2, NextMind3, and Neurable4. These
companies provide custom VR headsets that include physiologi-
cal sensors to enrich the interaction. The main obstacles of these
solutions are that they are proprietary, require specific VR equip-
ment, and the software provided for the analysis of physiological
signals is restricted to each hardware manufacturer. On the other
hand, some open-source tools have been designed by academic ini-
tiatives but all have shortcomings, and some require codings skills
that restrict its utility in some possible users. For example, visual
perception experiments in VR can be conducted with PsychXR [8]
but it requires the use of Python to configure the experiments, or
Unity-compatible tools that unlock analysis of human behavior with
UXF [5] are not compatible with external wearable sensors, HRV
integration with PARE-VR [51] does not provide heart rate features,
or the BL-engine [41] and PhysioVR [43] used to create physiolog-
ically adaptive games do not incorporate dedicated interfaces for
synchronized experimentation and post-session analyses.

2.3 Heart Rate Variability in Virtual Environments

HRV is a measure calculated from raw cardiovascular data (e.g.,
ECG, PPG). The starting point to conduct HRV analysis involves
the extraction of the highest peaks of the signal (e.g., R peaks in the
ECG) and the calculation of the time between consecutive regular
peaks, leading to a time-series called R-to-R intervals (RRi) [10].
Two main branches of HRV analysis include time and frequency
domains. Popular time-based features like the standard deviation of
the RRi (SDNN) and the root mean square value of the successive
RRi differences (RMSSD). Some metrics in frequency domain cover
the absolute power of the different frequency bands (very low, low,
and high) and ratios between those absolute values [56].

The access to simple sensing devices has popularized the inte-
gration of heart signals into interactive applications. Including a
growing interest in HRV features as descriptors of stress, engage-
ment, and significant imbalances within the autonomous nervous
system [10]. For instance, heart rate values have been utilized to
assess perceived overall experience in collaborative VR environ-
ments [9], HRV metrics have also been included in VR biofeedback
games to encourage players to manage their stress levels [33], or

1https://www.emteqlabs.com/
2https://looxidlabs.com//
3https://www.next-mind.com/
4https://www.neurable.com/

to promote breathing strategies that help preserve attentional re-
sources [4].

Moreover, HRV analysis has also been widely used to explain
players’ behavioral responses when interacting with games and VR
applications, complementing the conventional methods to capture
perceived user experiences [14]. In non-VR settings, the real-time
analysis of HRV is a critical approach to determine psychological
aspects of a person, such as pain [23], mental workload [18], or
stress [15, 36]. However, measurement of heart activity in VR
systems often poses challenges (e.g., due to wired connections and
data synchronization) that interfere with the natural interaction of
the user; an example can be found in a project that estimated stress
for VR pain management using HRV biofeedback [7].

The architecture of the Excite-O-Meter aims to facilitate the
integration of bodily signals within controlled and immersive VR-
based scenarios. The tool was designed to fill many of the before-
mentioned gaps and provide user-friendly physiological (e.g., heart
activity) information embedded into VR applications.

3 DESIGNING THE Excite-O-Meter

3.1 Online Survey

In order to specify the design requirements of the Excite-O-Meter,
a survey5 was conducted online (using LimeSurvey running on
institutional servers) from April 24, 2020 to May 14, 2020. No
person-identifiable information (e.g., no demographics or IPs) were
collected. Users were recruited through mailing lists, VR forums
(Unity, reddit), and social media (twitter). Questions were presented
after a short description of the Excite-O-Meter , which mentioned
the integration of “heart rate data”, described three example use cases
(developers, market and UX researchers, clinicians), and included a
simplified sketch of the system architecture.

3.2 Requirements

The survey was conducted and completed by 58 potential users
who described themselves as “researcher” (n=49), “Unity developer”
(n=21; mostly beginner or intermediate level), “marketing/product
tester” (n=4), “clinical practitioner” (n=2). Multiple options could
be selected in the responses. Results showed the interest of the
Excite-O-Meter as a tool for “experimental design” (n=35), “clini-
cal applications” (n=28), “cognitive enhancement” (n=16), “training”
(n=15), “games” (n=21), “360 video/cinematography” (n=5). The
highest-ranked features were the possibility to observe the user’s
physiology in real-time (n=48), ability to make VR applications
react to user physiology (n=37), and analyze user’s reactions offline
(after use) (n=37). Respondents insights were used to determine the
following design approaches and system requirements:

• (R1) Be compatible with the game engine Unity so that it
is accessible to a broad community of VR researchers and
developers.

• (R2) Be easy to include in VR projects with minimal coding.

• (R3) Support communication with a portable and accurate
wearable sensor for collecting heart activity signals.

• (R4) Facilitate scalable integration of additional modalities in
the future (e.g., sensors, physiological signals, features).

• (R5) Provide scientifically validated physiological metrics (ex-
tracted from HR and HRV), which estimate users’ level of
excitement, arousal, or general physiological reactivity.

• (R6) Include data visualization to facilitate interpretation of
bodily signals, both in online and offline modes.

5Full survey on: https://cutt.ly/Excite-O-Meter_survey
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Figure 1: System architecture of the Excite-O-Meter . The data flow starts with the body signals collected by the sensors and converted by the
Excite-O-Meter|Devices application into compatible physiological data. Then, the two modules for Online Data Processing and Offline Data
Visualization are embedded in the game engine to enable the core functionalities of the framework. On the other end, any Custom VR Scene can
leverage physiological data to trigger user-defined events or generate logs of new variables.

3.3 Design references
Primary analysis was conducted along three lines to define the design
of the Excite-O-Meter regarding visual interface and features:

a. Available tools: A qualitative analysis was carried out about
key features of existing solutions that integrate physiological sig-
nals, particularly HRV, for user experience research. Namely, the
interfaces of the applications iMotions [20], OpenSignals [3], Ku-
biosHRV [26], EliteHRV [16] and PhysioLab [42]. The features
were described and discussed between scientists and developers,
which resulted in defining elements like having grouped icons in-
stead of texts, color coding for signals, expandable elements, and
modifiable time window.

b. Visualization concepts: An examination of visualization tech-
niques for physiological (particularly cardiovascular) metrics was
performed to create a pool of options that facilitate understanding
of data displayed in the Excite-O-Meter , especially the time-
series plots. Multiple options were discussed from scientific papers
about visualization of cardiovascular reactivity [60] from the tools
aforementioned and ideas devised by the team.

c. Low fidelity prototypes: A wireframe prototype was used to
define the visual elements for the real-time and offline data analysis.
This sketch was developed to start exploring the final solution’s
modularity directly in Unity. Visual layouts were iteratively created
and discussed among designers, developers, and scientists.

4 SYSTEM ARCHITECTURE AND MODULES

The Excite-O-Meter has been designed as a modular and flexi-
ble tool, enhanced with intuitive visualizations that facilitate the
interpretation of useful physiological metrics. The system archi-
tecture comprises four main software components, as depicted in
Figure 1. The software is open-source and publicly available on
www.exciteometer.eu.

This tool represents an integrative and unified approach where
end-users can easily include bodily signals in existing VR projects
developed in Unity (section 4.1). The first stage is the software
Excite-O-Meter|Devices (section 4.2), which configures the
data acquisition from the wearable sensors and is the only soft-
are outside the game engine. Then, the module 1 for online data
preprocessing (section 4.3) comprises the framework’s core func-
tions. The module 2 named offline data visualization (section 4.4)
enables visual post-hoc analyses to compare behavior from mul-
tiple users of the VR experience. In this paper, the development
and validation of the framework uses one heart rate sensor, but the
architecture is scalable and can easily support more physiological
sensing modalities in the future.

4.1 Custom VR scene scripts

Researchers, hobbyists, and game designers working with VR tech-
nology usually have very different needs when developing their
scenarios. Whereas researchers might prioritize reliable data collec-
tion and flexibility to control experimental settings, other users might
prefer a straightforward integration of bodily signals. Therefore, the
tool seamlessly integrates with existing VR projects for different use
cases. It is packaged as a Unity plugin, in line with requirement (R1).
The software contains all programming scripts, visual assets, and
external libraries needed to enable physiology-based capabilities just
by dragging and dropping objects to an existing scene, as in require-
ment (R2). Personalized functionalities are feasible from any custom
VR scene script (top-left in Figure 1) to access raw physiological
data, utilize a biofeedback panel, or log more system variables with
a single line of code. Hence, scientists could quickly create experi-
mental sessions from existing VR environments, and non-academic
users could smoothly explore how their own heart activity reacts in
real-time to the virtual experience under construction.
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4.2 Excite-O-Meter|Devices

A critical technical challenge concerns the integration of data from
external sensors to the game engines commonly used to build VR
applications. Including physiological data from commercial wear-
able sensors usually requires considerable efforts in engineering
and programming. The Excite-O-Meter|Devices is a standalone
software client that solves this problem. The software accesses the
services of Bluetooth Low Energy devices, requests the physiologi-
cal data, and forwards it to VR applications developed in Unity.

To meet requirement (R3), the commercial heart activity sen-
sor (chest strap) Polar H10 was selected as data input for the
Excite-O-Meter . This sensor enables real-time HRV analysis
by providing raw ECG, HR, RRi with precision of milliseconds [50].
Besides, it is relatively low-cost (about C80) compared to other
ECG devices with similar precision [48].

The Excite-O-Meter|Devices (top-right in Figure 1) acts as a
bridge between the sensors and the Unity game engine. Its main role
is to convert raw physiological data into a continuous data stream to
be processed in the rest of the framework. The selected communi-
cation protocol is Lab Streaming Layer (LSL) [24], a middleware
that allows networking, time-synchronization, and (near-) real-time
access to time-series data. LSL is a standardized, cross-platform
library already adopted in a wide range of hardware to record physi-
ological data. The existing compatibility streamlines the scalability
of the Excite-O-Meter to more sensors without affecting the data
structure, as required in (R4).

Two different software clients of Excite-O-Meter|Devices
were developed to access the data from the Polar H10. An Android
application for mobile devices (e.g., smartphones or tablets) is based
on the software development kit (SDK) of the sensor’s manufacturer
[49]. Another option is a Windows Universal Windows Platform
(UWP) application that runs on computers (e.g., PCs or laptops).
The desktop application can simultaneously stream raw ECG, HR,
and RRi data; but due to network restrictions needs to be executed in
a computer different from the one used to run the VR environment.

4.3 Online data processing
The Online Data Processing module (bottom-left in Figure 1) inte-
grates the main functionalities of the Excite-O-Meter into custom
VR applications. Each component is described next:

4.3.1 Feature extraction
The component Data Stream Inlet receives physiological data and
enables all the online functionalities. Raw physiological data is
shared with custom VR scenes through script functions. Also, the
Biofeedback Manager provides a UI object to let VR users see their
own physiological signals. The Physiological Feature Extractor
processes data samples and calculates relevant physiological metrics.

There are a large number of features that can be extracted from
heart activity [56]. The tool includes two features from heart activity
that are useful for both experts knowing the underlying scientific
details and non-expert users, fulfilling requirement (R5). Namely,
the Standard Deviation of the RR intervals (SDNN) and the Root-
Mean-Squared of Successive Differences (RMSSD), both measured
in milliseconds (ms). SDNN collects information from the sympa-
thetic (fight and flight) and parasympathetic (rest and digest) nervous

Figure 2: Annotation system for sessions. The image exemplifies
a situation where an experimenter writes that a participant suffered
motion sickness around 30 seconds after the start of the session.

system. It has been used as the “gold standard” for cardiac risk strat-
ification when recorded in long (24h) periods [56]. A preliminary
study with ten subjects reported that SDNN values decrease during
feelings of excitement when used in VR [21]. RMSSD is a cardiac
variable that reflects beat-to-beat variance in HR, used to describe
the changes produced in HRV due to the vagus nerve (a fundamental
component of the parasympathetic nervous system) [56].

These physiological features are calculated directly in the Unity
game engine from the data streamed by the software clients. The
Physiological Feature Extractor uses predefined default parameters
to govern this process. It determines if a feature is calculated every
particular time (time-based) or after a specific number of received
samples (sample-based), time-based window length, sample-based
buffer size, and window overlapping percentage. A json configura-
tion file is included if the users want to adapt the default setup to
a different real-time signal processing pipeline. The programming
structure for real-time feature calculation allows for the addition of
more metrics from raw physiological data without difficulty.

4.3.2 Online UI manager

When the Excite-O-Meter is included in any VR application, the
experimenter can activate a UI that is only visible on the computer
screen (not the VR headset). This interface can monitor the phys-
iological signals and control the recording sessions. The Figure 3
(left) outlines the Online UI Manager. The button at the top, label
number (1), allows switching before online and offline modes. Panel
number (2) shows the instant value and time-series visualization of
the last 20 raw physiological data samples received via LSL. The
visual warning labeled (3) will appear in case of sensor connectivity
issues.

External experimenters also have the option to control the
start/end of data logging from the desktop computer (thick dashed
line from Online UI Manager in Figure 1). For example, scientists
can record separate sessions for every participant of the VR experi-
ment, by writing a unique identifier in box number (4). The offline
data visualization module retrieves these sessions from logged files
for specific analyses (details about data log in section 4.3.3).

The annotation system through Custom Event Markers is an essen-
tial feature to register special events, which is critical when studying
behavioral responses to stimuli with VR experiments. From the
panel (5), the user can mark specific events and save them for further
analysis (Figure 2). For instance, an experimenter could register
glitches in the VR application, qualitative behaviors of participants,
or think-aloud responses for usability research. All markers contain
a synchronized timestamp helpful to compare contextual information
with the evoked physiological responses, as shown in box number
(6). Programmers can use activate all functions from scripts in
case the online UI interferes with existing objects in the VR scene.
Finally, label (7) shows the UI object containing the Biofeedback
Manager. It can be added to any custom VR environment (in the
image, a simple scene with blue cubes) to let the VR user see in
real-time their HR and RRi signals.

4.3.3 Data log integration

The data logging system is a structured, automatic, and simplified
way to collect participants’ data when running experiments with
the tool. After each session in VR, the Excite-O-Meter generates
a subfolder inside the folder LogFiles ExciteOMeter with the
date, time, and identifier input from panel (5). The start/end log
are handled by the Online UI Manager. Each session contains
multiple .csv files containing the time-series data, including raw
physiological data (HR, RRi), extracted features (SDNN, RMSSD),
the “excitement level” estimated at the end of the session, and the
Custom Event Markers input by the experimenter. Then, the Camera
Viewport Receiver creates screenshots, by default every 15-sec, of
the specific view of the VR users; this images are useful to associate
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Figure 3: Excite-O-Meter user interface. Left: Online data processing module. Right: Offline data visualization module.

visual stimuli that triggered a body reaction. Finally, the Custom
Data Log Receiver lets developers log user-defined variables, which
are not visible in the Offline Visualization Manager but are crucial
for offline analysis with external software tools (e.g., R, Python).

4.4 Offline data visualization
Together with the online data processing module, the integration of
an Offline Data Visualization tool completes the requirement (R6).
This module augments any Unity VR application with a dashboard
for post-hoc visualization of the recorded sessions. The dashboard
is compiled in the same executable as the original VR application,
without requiring coding, and accessible with a single click. The
Offline Visualization Manager handles all the functionalities to load
the logged files from the disk and to control the dashboard’s UI that
the experimenter can manipulate in the desktop screen.

The figure 3 (right) depicts the user interface of the data visu-
alization dashboard. First, from the region labeled as (1) in the
image, a user can choose one to three sessions available from the
list; each session is identified with a different color. When a session
is loaded, the estimated “excitement level” will appear as a time
series at the bottom of the screen, labeled as (2). The horizontal
timeline bar, label number (3), and the buttons at the bottom can be
used to navigate the session, change the zoom, or select a specific
timestamp. The panel number (4) can be used to select the specific
variables to visualize among the raw physiological data (HR, RRi),
extracted features (SDNN, RMSSD), or custom event markers. The
session data appears in the region (5). The top panel with the label
(6) displays the camera viewport; this image corresponds to what the
user was observing at the chosen timestamp. The Excite-O-Meter
visualizer, label (7), serves to indicate the “excitement level” of the
VR scene at a specific timestamp. It is calculated as the average
excitement among all the users that are loaded in the dashboard.
Finally, the buttons in the top-right corner, label (8), are used to
exit the application or to return to the custom VR scene to continue
recording more sessions.

5 SYSTEM EVALUATION

The evaluation included two validation tests aiming to assess the
technical adequacy of the Excite-O-Meter .

1. Reliability of data acquisition: Does the integration of real-
time physiological analysis in the Unity game engine induce
data loss or errors in the real-time calculation of HRV features?

2. Validity of the setup and sensor: Can the wearable sensor
Polar H10 provide valid cardiac information compared to a
research-grade ECG system?

5.1 Test 1: Reliability of data acquisition

This technical test assessed whether the integration of physiological
data into the game engine would produce data loss and wrong feature
calculation. Generally, rendering virtual environments puts high
computational demands on the game engine, which has to process
large amount of data. By embedding real-time data acquisition
from external sensors, additional demands are induced and might
lead to a drop in the number of recorded samples. During the test,
our software framework was included in an empty Unity scene and
compared with an external data receiver to compare if the game
engine can capture physiological data reliably.

Materials: A 1-lead ECG with the Polar H10 chest strap [50]
was the device used to measure cardiac activity. Then, two ap-
plications were used to collect physiological data from the heart
sensor simultaneously: i) The application LabRecorder [24], which
was assumed as ground truth because it is a standalone desktop
application included by default to log incoming data with LSL;
moreover, it does not run 3D elements that might affect performance.
ii) The Excite-O-Meter|Devices streamed data to an empty vir-
tual scene augmented with the Excite-O-Meter and was compiled
as a standalone desktop application using Unity 2019.4.1f1. Both
applications were executed on a laptop with Intel Core i7-6700HQ
CPU, with 8GB RAM and Nvidia GeForce GTX 960M running
Windows 10.

Experimental procedure: Data was recorded from one co-
author during a 5-min session wearing the heart sensor. The first
minute was sitting in a resting state, then two minutes doing jumping-
jacks to increase heart activity, and the last two minutes sitting. The
LabRecorder was started first and stopped last to guarantee that it
contained all samples logged by the Excite-O-Meter . The cardiac
activity signals sent from the sensor were: Heart rate at 1Hz, RRi
between 1Hz-2Hz, and raw ECG at 130Hz. The different levels of
physical activity and signal frequency allowed to check the effects of
user movement and data frequency on the acquisition performance.

Data analysis: Data logs from LabRecorder were manually
aligned with the timestamps recorded by the Excite-O-Meter so
that both contained data in the same time window. Mean squared
error (MSE) was used to quantify the difference between the col-
lected time series. First, the timestamps and signal values between
both data loggers. The HRV features were also (RMSSD, SDNN)
calculated both in real-time by the Excite-O-Meter and offline
with a data analysis library. This analysis was performed with
Python [62](version 3.7.6), using the library pyxdf to load logs from
LabRecorder, and the neurophysiological toolbox NeuroKit2 [34] as
ground truth for HRV features.
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Figure 4: Screenshots of the 360°videos used in the experiment.
Normative values defined in reference [31].

Results from test 1

Regarding loss of data packages. The number of data samples was
exactly the same both in the application with the Excite-O-Meter
and in the official standalone recorder provided by the LSL. Hence,
no data loss was detected when integrating real-time acquisition of
physiological data into the Unity game engine.

Table 1: Mean Square Error between data acquired with
Excite-O-Meter and ground-truth systems

Recorded samples MSE (value) MSE (timestamps)
ECG 38056 0 3.9×10−6

HR 301 0 2.5×10−4

RRi 439 9×10−8 2.5×10−4

SDNN 31 4.35 -

RMSSD 31 0.099 -

When analyzing the extracted features in real-time versus offline
feature extraction, outliers were found in the ECG signal in both
data receivers. The data outliers, which were caused outside the
Excite-O-Meter (presumably caused by saturation in communi-
cation channel of the sensor), were corrected by applying filtering
that skips calculations on signal values higher than 1×107. For this
reason, raw ECG is not considered a fully compatible physiological
source yet, and only HR and RRi are used as data inputs.

Table 1 shows that the MSE values comparing log files from both
recorders were lower than 10−3 for most timestamps and physio-
logical signal values. However, the MSE between the real-time and
offline calculation of the feature SDNN was higher than the rest. A
posterior analysis showed that the difference was caused by the use
of a biased estimator of standard deviation (dividing by N-1 instead
of N). This difference was corrected to match the real-time analy-
sis in the Excite-O-Meter with other existing signal processing
packages.

5.2 Test 2: Validity of the setup and sensor

The second test explored the validity of the technical setup by com-
paring the heart activity gathered from the wearable sensor (Polar
H10) and an established research-grade system (Brain Products
LiveAmp32) when combined with VR.

Participants: Four healthy participants (two females) completed
the experiment. A snowball sampling technique was used to min-
imize the infection risk and personal contact due to pandemic. A
sanitation protocol was also followed to avoid potential risks when
using the headset and controllers.

Virtual stimuli: The virtual scenario consisted of 360º videos

extracted from a public database6 [31], which provides normative
arousal ratings per video. Four videos were selected, they have
comparable length (∼2 min) and maximize the difference on the
arousal dimension; see details in Figure 4.

Materials: Two devices collected cardiac activity: i) a 1-lead
ECG with the Polar H10 chest strap [50], and ii) a 3-electrode
research-grade ECG with the Brain Products LiveAmp32 [13]. The
VR application rendered in the headset HTC Vive Pro and it was
compiled as standalone using Unity 2019.4.1f1. The experiment ran
on a desktop PC with Intel Core i7-3770K CPU, with 16 GB RAM,
and Nvidia GeForce GTX 1080 Ti GPU using Windows 10.

Experimental procedure: Upon arrival to the research labora-
tory, participants were first equipped with the Polar H10 chest strap
placed on the sternum and the LiveAmp32 placed in a modified
Einthoven arrangement. ECG was continuously sampled throughout
the experience at 1000 Hz. After seating themselves on a chair,
the HTC Vive headset was placed on their heads. The stimula-
tion consisted of a baseline (30 sec) and the four 360º videos, with
four resting periods interspersed between the videos (30 sec each).
The experiment took ∼15-min per participant. Participants were
instructed to simply watch the videos and freely move their heads.
The videos’ order was randomized across participants to avoid order
effects, and the 30-sec baseline before the first video also served as
acclimatization to the VR environment.

Data analysis: Statistical analysis was performed using R (ver-
sion 3.5.1) [52]. To evaluate the accuracy and validity of the Polar
H10 for collecting cardiovascular data in real-time, we compared
signals of two sources: i) RRi provided by the Polar H10 (and stored
in the logs of the Excite-O-Meter ), ii) raw ECG data from the
LiveAmp32, recorded with the BrainVision Recorder software, and
post-processed with Kubios v2.2 [57] to extract the signal peaks
and subsequent RRi. The ECG and RRi were visually inspected for
artifacts, and the strength of the relationship between signal sources
was calculated with Bivariate Pearson’s correlation coefficient.

Results from test 2

No artifacts (e.g., movement artifacts, data loss, faulty peaks, extra
systoles) were found in the visual inspection of the ECG and RRi
data. The RRi collected with the Polar H10 and the BrainProducts
LiveAmp were highly correlated for all participants. The weakest
correlation was Pearson’s r = 0.947, as shown in Figure 5.

This high correlation between signals suggests that the wear-
able sensor Polar H10 proposed to record cardiac activity
(ECG/heartbeats) yields similar precision than the BrainProducts
LiveAmp, which can be considered a “gold standard” in research
[48]. The differences in the values could be caused by the noise
inherent to physiological data collection.

The technical tests confirm the feasibility of real-time data collec-
tion. The number of samples between the default LSL receiver and
the Excite-O-Meter was the same. It shows that embedding data
acquisition within the game engine does not affect data transmission
or quality (e.g., did not reduce the sampling rate for real-time data
analysis). Therefore, physiological data transmission and quality
were not affected among applications, and the data received and pro-
cessed in Unity by the Excite-O-Meter is reliable and consistent.

6 USE CASE: MEASURING “EXCITEMENT LEVEL”

This section provides an example on how the Excite-O-Meter
could be used to further explore research questions in behavioral
research and psychophysiology. Mainly, supporting scientific experi-
ments involving heart rate signals and VR. Specifically, this use case
utilizes the same participants and experimental procedure described
in section 5.2 to investigate the question: To what extent does an

6https://vhil.stanford.edu/360-video-database/
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“excitement level” metric based on heart activity features correspond
to normative arousal ratings of VR 360º videos?

6.1 Proposed “excitement level” metric

The psychological state of “excitement”, which we aim to infer from
physiological reactivity (HR and HRV), conceptually overlaps with
other psychological phenomena like ‘engagement’ or ‘emotional
arousal’ [54]. The Excite-O-Meter defines “excitement level” as
a general description of autonomic activation [6], a widely studied
psychophysiological phenomenon.

In the current architecture, there are two parameters that can lead
to the estimation of a metric for “excitement level”: RRi, influenced
by both sympathetic and parasympathetic activation; and HRV (i.e.,
variations of the RRi), which mainly reflect parasympathetic acti-
vation [56]. To empirically decide for one of the two candidate
HRV measures, SDNN and RMSSD were calculated using sliding
windows with five RRi per window. The results of this heuristic
were highly correlated (e.g., Pearson’s r = 0.817), and the RMSSD
was used for further analyses, as it captures specifically short-term
(e.g., parasympathetically-driven) RRi variations [56].

The process for the calculation of the metric is summarized in
Algorithm 1. First, RRi and RMSSD were z-transformed for each
participant (i.e., subtracting mean and dividing by the standard de-
viation). Then, each value was converted into its corresponding
percentile over the cumulative density function to scale the values.
For both features (RRi and RMSSD), a higher value corresponds
to lower cardiac (reactivity, arousal, or “excitement”). Thus, the
scores were inverted so that a higher value corresponds to higher
cardiovascular (re)activity. The “excitement” score was calculated
as the mean of the two standardized scores and can range from 0
(low excitement) to +1 (high excitement).

6.2 Analysis of the proposed metric

The collected heart data is processed to create an estimate for “ex-
citement level” that might discriminate videos with low- and high-
arousal normative ratings. A linear mixed-effects model was per-
formed, using the R package lmerTest (version 3.5.1) [52], to test
whether the “excitement level” metric differs between both types of
stimuli. The test accounts for within-subject variance (repeated test-
ing). The excitement was higher for high-arousal than low-arousal
videos in some participants, see Figure 6. ANOVA was applied to

Figure 5: RR intervals (in ms) of one participant. The RR intervals for
both devices (Brain Products LiveAmp sensors in red, Polar H10 in
blue) were highly correlated, confirming the validity of cardiographic
data acquired with the Polar H10.

Algorithm 1: Proposed “excitement level” metric

Data: Data from a session with N values of RRi and RMSSD
Result: Time-series with ‘‘Excitement level’’
begin

RRin ← z-scores of RRi
RMSSDn ← z-scores of RMSSD

for n← 1 to N do
/* Z-score to percentile. */
RRip[n]← CDF of RRin[n]
RMSSDp[n]← CDF of RMSSDn[n]

/* Excitement level per timestamp */
Excitement[n] = 1− (RRip[n]+RMSSDp[n])/2

end
end

Figure 6: Distribution (density and boxplots) of excitement scores for
both videos with lower (orange) and higher (green) normative arousal
ratings. Dots represent average excitement scores per participant
and video category (low-arousal, high-arousal).

the output of the linear mixed-effects model for easier interpretabil-
ity of the reported differences. However, the results indicated that
values did not differ significantly between low- and high-arousal
360º videos (F(1,3)=0.339, p=0.601).

6.3 Extending the feasibility study

Note that this example experiment relies on the use of normative
ratings from the video database. These ratings can only serve as
a proxy for individual subjective arousal, because of large inter-
individual variability. Yet, using normative values as reference
was chosen because other explicit self-reported ratings can alter
the experience itself [59], or cumulative ratings at the end of an
experimental session are prone to memory bias [30].

One (longer-term) aim of the Excite-O-Meter - and biological
psychology in general - is to identify “objective” biological markers
of subjective experience. The current metric of “excitement level”
will not be able to distinguish between such states with a one- or
low-dimensional recording (like cardiac activity). But it would
require —if possible at all— additional modalities (e.g., kinematic
parameters, brain activation, skin conductance) which can be further
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included in the current architecture of the system.
In addition, stimuli with interactive immersive experiences (in-

stead of 360º videos) may elicit stronger excitement or overall emo-
tional responses in participants. Also, the granularity of the involved
HRV metrics could suggest that our proposed “excitement” metric
might detect cardiac reactivity in VR applications in further valida-
tion studies. However, more participants are necessary because the
small sample size makes it difficult to detect small effects.

The code of the example use-case experiment and the analysis
scripts can be requested to further develop the Excite-O-Meter
and validate the “excitement level” metric.

7 DISCUSSION

In this paper, we have presented the design, development, evalua-
tion, and a possible use case of the software framework. Our tool
aims to bridge the technological gap to conduct VR experiments
including heart rate signals. The initial survey with potential users
steered the design choices and pool of available functionalities. The
preliminary empirical evaluations support the technical suitability of
the Excite-O-Meter as a tool to acquire valid physiological data
directly in the game engine. In the use case, we proposed an initial
metric for excitement levels from the cardiac activity. We thereby
showed how the tool could be integrated into VR user research and
for scientific experimentation using immersive technology.

The software framework is a flexible and modular tool that can
speed up the process of including bodily signals in VR experiments.
The contribution and uniqueness of the Excite-O-Meter compared
to similar tools is threefold: i) providing compatibility with afford-
able hardware and software tools to conduct reliable experiments in
VR with bodily signals, ii) simplifying the interpretation of complex
cardiovascular data (e.g., HRV) by proposing metrics and visual-
izations of excitement levels for both offline and online analysis
and iii) proposing a non-proprietary integrative solution that can be
used with any VR content (or desktop games) developed in Unity,
accessible to experts and beginners by only dragging and dropping
the provided files.

Also, the data visualization module includes time-series plotting
that keeps in mind performance, so we are confident that integrating
the tool in interactive VR (rather than 360º videos) will not impede
the system’s performance. Note that data acquisition and real-time
feature extraction were not affected when embedded in the Unity
game engine for VR development. The current acceptable perfor-
mance and the integration of the LSL protocol within the software
architecture ensure that other hardware tools and sensing modal-
ities can be further integrated with minimal effort. For example,
from latest VR hardware with brain activation sensors and kinematic
information.

The offline module provides visualization of data for post-hoc
analysis. The pilot evaluation showed that our tool provides a stable
data acquisition rate when embedded in the game engine. Moreover,
the physiological recordings from the wearable device are as valid
as research-grade ECG, especially for HRV analysis. A preliminary
“excitement level” algorithm that measures psychophysiological re-
activity was proposed and integrated within the tool. The feasibility
study hinted at increased values for 360° videos with higher norma-
tive arousal levels, but this metric requires further study.

Our future work includes the extension of the Excite-O-Meter
with other sensors (e.g., built into future generations of VR headsets)
and modalities. Foremost the real-time analysis of kinematic signals
(head, body movements), which provide a rich source of data to
understand user behaviors at the individual level [37, 39]. In addi-
tion, more refined data analysis techniques such as algorithms for
supervised and reinforcement learning would open possibilities to
use the proposed tool to enhance VR-based training [45]. Ultimately,
a fusion of all available modalities is envisaged for a comprehensive
and scientifically valid quantification of “excitement level”, which

might lead to an optimal VR experience.
The limitations of the work include the need of evaluating the

framework with more physiological sensors compatible with LSL
protocol, beyond the use of only cardiac activity. Regarding the
preliminary metric of “excitement”, a more comprehensive assess-
ment is required for its validation (with higher statistical power once
COVID-19 restrictions are over). However, it also is not intended
as an exhaustive measure for psychological trials but a simplified
and usable metric to display physiological activation information in
real-time. Moreover, its calculation requires refinement as the trans-
formation from z-score to percentile may not be helpful. Moreover,
although we have simplified the usability of the Excite-O-Meter
as a Unity package, the integration still requires some experience
with the game engine; thus limiting its operability by beginners.

7.1 Conclusion
We presented the Excite-O-Meter . A software framework to
integrate bodily signals (currently cardiac activity the low-cost Polar
H10 chest strap) for developing and evaluating VR applications
with Unity. It provides real-time feature extraction, visualization,
data logging, and markers of custom events. These features are
useful for user-research, scientific experiments, or hobbyists. We
suggest the Excite-O-Meter and as a validated tool that is better
than existing options because is easy-to-use, open-source, and with
comprehensive functionalities. Due to its scalable architecture, more
sensing modalities beyond cardiac activity (e.g., neurophysiological,
kinematic) can be incorporated in the future for enhanced analysis of
body reactions. We hope that this tool contributes to promoting the
integration of physiological data into VR to create more user-centric
experiences.

The Excite-O-Meter can be freely accessed on www.
exciteometer.eu and the instructions to contribute to the open-
source project can be accessed on www.github.com/luiseduve/
exciteometer.
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